Skip to main content
Log in

mCherry Protein as an In Vivo Quantitative Reporter of Gene Expression in the Chloroplast of Chlamydomonas reinhardtii

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Microalgal chloroplasts have a substantial potential as a sustainable alternative to conventional hosts for recombinant protein production, due to their photosynthetic ability. However, realization of microalgal chloroplast as a platform for the production of recombinant proteins has suffered from difficulties in genetic manipulation and development of molecular tools, including reporter proteins. Here, we investigated the suitability of a fluorescent protein, mCherry, as a reporter for quantitative in vivo monitoring of gene expression in the chloroplast of Chlamydomonas reinhardtii. By analyzing cell growth, the fluorescence intensity of a mCherry-expressing strain, as well as auto-fluorescence, under different photoautotrophic culture conditions, we demonstrated a strong correlation between the fluorescence intensity of mCherry expressed in the chloroplast and its protein expression level. In addition, we found that the supply of CO2 and light energy can be an important factor for the synthesis of recombinant proteins in the microalgal chloroplast. Our results identified mCherry as a reliable and quantitative reporter for the study of gene expression in chloroplasts, which is essential for the biotechnological application of microalgal chloroplasts and for improved production of valuable recombinant proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Doron, L., Segal, N., & Shapira, M. (2016). Transgene expression in microalgae—From tools to applications. Frontiers in Plant Science,7, 505.

    PubMed  PubMed Central  Google Scholar 

  2. Shimizu, Y. (1996). Microalgal metabolites: A new perspective. Annual Review of Microbiology,50, 431–465.

    CAS  PubMed  Google Scholar 

  3. Barrera, D. J., & Mayfield, S. P. (2013). High-value recombinant protein production in microalgae. In E. Richmond & Q. Hu (Eds.), Handbook of microalgal culture: Applied phycology and biotechnology (2nd ed., pp. 532–544). Hoboken: Wiley.

    Google Scholar 

  4. Kwon, Y. M., Kim, K. W., Choi, T. Y., Kim, S. Y., & Kim, J. Y. H. (2018). Manipulation of the microalgal chloroplast by genetic engineering for biotechnological utilization as a green biofactory. World Journal of Microbiology and Biotechnology,34, 183.

    PubMed  Google Scholar 

  5. Manuell, A. L., Beligni, M. V., Elder, J. H., Siefker, D. T., Tran, M., Weber, A., et al. (2007). Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast. Plant Biotechnology Journal,5, 402–412.

    CAS  PubMed  Google Scholar 

  6. Rasala, B. A., & Mayfield, S. P. (2015). Photosynthetic biomanufacturing in green algae; Production of recombinant proteins for industrial, nutritional, and medical uses. Photosynthesis Research,123, 227–239.

    CAS  PubMed  Google Scholar 

  7. Wannathong, T., Waterhouse, J. C., Young, R. E., Economou, C. K., & Purton, S. (2016). New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii. Applied Microbiology and Biotechnology,100, 5467–5477.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Braun-Galleani, S., Baganz, F., & Purton, S. (2015). Improving recombinant protein production in the Chlamydomonas reinhardtii chloroplast using vivid Verde Fluorescent Protein as a reporter. Biotechnology Journal,10, 1289–1297.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Schmidt, F. R. (2004). Recombinant expression systems in the pharmaceutical industry. Applied Microbiology and Biotechnology,65, 363–372.

    CAS  PubMed  Google Scholar 

  10. Rosales-Mendoza, S., Paz-Maldonado, L. M., & Soria-Guerra, R. E. (2012). Chlamydomonas reinhardtii as a viable platform for the production of recombinant proteins: Current status and perspectives. Plant Cell Reports,31, 479–494.

    CAS  PubMed  Google Scholar 

  11. Purton, S., Szaub, J. B., Wannathong, T., Young, R., & Economou, C. K. (2013). Genetic engineering of algal chloroplasts: Progress and prospects. Russian Journal of Plant Physiology,60, 491–499.

    CAS  Google Scholar 

  12. Pacheco, S. E. C., Hankamer, B., & Oey, M. (2018). Optimising light conditions increases recombinant protein production in Chlamydomonas reinhardtii chloroplasts. Algal Research,32, 329–340.

    Google Scholar 

  13. Demurtas, O. C., Massa, S., Ferrante, P., Venuti, A., Franconi, R., & Giuliano, G. (2013). A Chlamydomonas-derived human papillomavirus 16 E7 vaccine induces specific tumor protection. PLoS ONE,8, e61473.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Day, A., & Goldschmidt-Clermont, M. (2011). The chloroplast transformation toolbox: Selectable markers and marker removal. Plant Biotechnology Journal,9, 540–553.

    CAS  PubMed  Google Scholar 

  15. Boynton, J. E., Gillham, N. W., Harris, E. H., Hosler, J. P., Johnson, A. M., Jones, A. R., et al. (1988). Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science,240, 1534–1538.

    CAS  PubMed  Google Scholar 

  16. Gan, Q., Jiang, J., Han, X., Wang, S., & Lu, Y. (2018). Engineering the chloroplast genome of oleaginous marine microalga Nannochloropsis oceanica. Frontiers in Plant Science,9, 439.

    PubMed  PubMed Central  Google Scholar 

  17. Kindle, K. L., Richards, K. L., & Stern, D. B. (1991). Engineering the chloroplast genome: Techniques and capabilities for chloroplast transformation in Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the United States of America,88, 1721–1725.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Economou, C., Wannathong, T., Szaub, J., & Purton, S. (2014). A simple, low-cost method for chloroplast transformation of the green alga Chlamydomonas reinhardtii. Methods in Molecular Biology,1132, 401–411.

    CAS  PubMed  Google Scholar 

  19. Barnes, D., Franklin, S., Schultz, J., Henry, R., Brown, E., Coragliotti, A., et al. (2005). Contribution of 5′- and 3′-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Molecular Genetics and Genomics,274, 625–636.

    CAS  PubMed  Google Scholar 

  20. Rasala, B. A., Muto, M., Sullivan, J., & Mayfield, S. P. (2011). Improved heterologous protein expression in the chloroplast of Chlamydomonas reinhardtii through promoter and 5′ untranslated region optimization. Plant Biotechnology Journal,9, 674–683.

    CAS  PubMed  Google Scholar 

  21. Specht, E. A., & Mayfield, S. P. (2013). Synthetic oligonucleotide libraries reveal novel regulatory elements in Chlamydomonas chloroplast mRNAs. ACS Synthetic Biology,2, 34–46.

    CAS  PubMed  Google Scholar 

  22. Minko, I., Holloway, S. P., Nikaido, S., Carter, M., Odom, O. W., Johnson, C. H., et al. (1999). Renilla luciferase as a vital reporter for chloroplast gene expression in Chlamydomonas. Molecular and General Genetics,262, 421–425.

    CAS  PubMed  Google Scholar 

  23. Ishikura, K., Takaoka, Y., Kato, K., Sekine, M., Yoshida, K., & Shinmyo, A. (1999). Expression of a foreign gene in Chlamydomonas reinhardtii chloroplast. Journal of Bioscience and Bioengineering,87, 307–314.

    CAS  PubMed  Google Scholar 

  24. Franklin, S., Ngo, B., Efuet, E., & Mayfield, S. P. (2002). Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast. Plant Journal,30, 733–744.

    CAS  PubMed  Google Scholar 

  25. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., & Prasher, D. C. (1994). Green fluorescent protein as a marker for gene expression. Science,263, 802–805.

    CAS  PubMed  Google Scholar 

  26. Kim, J. Y., & Cha, H. J. (2003). Down-regulation of acetate pathway through antisense strategy in Escherichia coli: Improved foreign protein production. Biotechnology and Bioengineering,83, 841–853.

    CAS  PubMed  Google Scholar 

  27. Soboleski, M. R., Oaks, J., & Halford, W. P. (2005). Green fluorescent protein is a quantitative reporter of gene expression in individual eukaryotic cells. FASEB Journal,19, 440–442.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rasala, B. A., Chao, S. S., Pier, M., Barrera, D. J., & Mayfield, S. P. (2014). Enhanced genetic tools for engineering multigene traits into green algae. PLoS ONE,9, e94028.

    PubMed  PubMed Central  Google Scholar 

  29. Lauersen, K. J., Kruse, O., & Mussgnug, J. H. (2015). Targeted expression of nuclear transgenes in Chlamydomonas reinhardtii with a versatile, modular vector toolkit. Applied Microbiology and Biotechnology,99, 3491–3503.

    CAS  PubMed  Google Scholar 

  30. Molino, J. V. D., de Carvalho, J. C. M., & Mayfield, S. P. (2018). Comparison of secretory signal peptides for heterologous protein expression in microalgae: Expanding the secretion portfolio for Chlamydomonas reinhardtii. PLoS ONE,13, e0192433.

    PubMed  PubMed Central  Google Scholar 

  31. Weiner, I., Shahar, N., Marco, P., Yacoby, I., & Tuller, T. (2019). Solving the riddle of the evolution of Shine-Dalgarno based translation in chloroplasts. Molecular Biology and Evolution,36, 2854–2860.

    PubMed  Google Scholar 

  32. Albano, C. R., Randers-Eichhorn, L., Bentley, W. E., & Rao, G. (1998). Green fluorescent protein as a real time quantitative reporter of heterologous protein production. Biotechnology Progress,14, 351–354.

    CAS  PubMed  Google Scholar 

  33. Rasala, B. A., Barrera, D. J., Ng, J., Plucinak, T. M., Rosenberg, J. N., Weeks, D. P., et al. (2013). Expanding the spectral palette of fluorescent proteins for the green microalga Chlamydomonas reinhardtii. Plant Journal,74, 545–556.

    CAS  PubMed  Google Scholar 

  34. Green, M. R., & Sambrook, J. (2012). Molecular cloning: A laboratory manual (4th ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  35. Puigbò, P., Guzmán, E., Romeu, A., & Garcia-Vallvé, S. (2007). OPTIMIZER: A web server for optimizing the codon usage of DNA sequences. Nucleic Acids Research,35, W126–W131.

    PubMed  PubMed Central  Google Scholar 

  36. Nakamura, Y., Gojobori, T., & Ikemura, T. (2000). Codon usage tabulated from international DNA sequence databases: Status for the year 2000. Nucleic Acids Research,28, 292.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kostylev, M., Otwell, A. E., Richardson, R. E., & Suzuki, Y. (2015). Cloning should be simple: Escherichia coli DH5α-mediated assembly of multiple DNA fragments with short end homologies. PLoS ONE,10, e0137466.

    PubMed  PubMed Central  Google Scholar 

  38. Newman, S. M., Boynton, J. E., Gillham, N. W., Randolph-Anderson, B. L., Johnson, A. M., & Harris, E. H. (1990). Transformation of chloroplast ribosomal RNA genes in Chlamydomonas: Molecular and genetic characterization of integration events. Genetics,126, 875–888.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Waldo, G. S., Standish, B. M., Berendzen, J., & Terwilliger, T. C. (1999). Rapid protein-folding assay using green fluorescent protein. Nature Biotechnology,17, 691–695.

    CAS  PubMed  Google Scholar 

  40. Nicholls, S. B., Chu, J., Abbruzzese, G., Tremblay, K. D., & Hardy, J. A. (2011). Mechanism of a genetically encoded dark-to-bright reporter for caspase activity. Journal of Biological Chemistry,286, 24977–24986.

    CAS  PubMed  Google Scholar 

  41. Stoffels, L., Taunt, H. N., Charalambous, B., & Purton, S. (2017). Synthesis of bacteriophage lytic proteins against Streptococcus pneumoniae in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnology Journal,15, 1130–1140.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the institutional project (Grant No. 2020M00600) from the National Marine Biodiversity Institute of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaoon Young Hwan Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 600 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.Y., Kim, K.W., Kwon, Y.M. et al. mCherry Protein as an In Vivo Quantitative Reporter of Gene Expression in the Chloroplast of Chlamydomonas reinhardtii. Mol Biotechnol 62, 297–305 (2020). https://doi.org/10.1007/s12033-020-00249-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-020-00249-9

Keywords

Navigation