Skip to main content

Advertisement

Log in

Leaf consumption by invertebrate aquatic shredders in the Amazon: effects of climate change and microbial conditioning

  • Research paper
  • Published:
Limnology Aims and scope Submit manuscript

Abstract

We grew leaves of Montrichardia arborescens in four microcosm chambers with different temperatures and CO2 concentrations simulating the scenarios of expected climate change. These leaves were used to feed shredders (Phylloicus) and to assess the effects of changes in leaf quality on their consumption. We also evaluated the effect of detritus conditioning by microorganisms on leaf consumption. We hypothesized that leaves of plants grown under different environmental conditions could offer substrata of different qualities to microorganisms colonizing them, and, consequently the shredder consumption rate would differ according to leaf conditioning. The microcosm chambers for plant growth simulated three different combined air temperature and CO2 scenarios, relative to the real-time (control) current conditions in Manaus-Brazil. The leaf consumption experiment was performed only in the control chamber. Specific leaf area was positively affected by predicted climate change, while tannins were detected only in leaves of plants grown in chambers simulating a changed climate. Other leaf detritus parameters were similar in all chambers. Shredders showed higher consumption rates in leaves developed under mild and intermediate conditions in relation to control. Shredder consumption was similar in conditioned and unconditioned treatments. Thus, shredder consumption was influenced more by the intrinsic quality of leaves than by microorganism conditioning, but we were not able to show effects of climate change on leaf quality that could explain differences in shredder consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams JA, Tuchman NC, Moore PA (2005) Effects of CO2-altered detritus on growth and chemically mediated decisions in crayfish (Procambarus clarkii). J N Am Benthol Soc 24:330–345

    Article  Google Scholar 

  • Aiyer PVD (2018) The Fungi (Eumycotina). In: Aiyer PVD (ed) Introduction to Microbiology. Volume Two: Virology, Mycology & Environmental Microbiology. Idea Publishing, pp137–138

  • Arsuffi TL, Suberkropp K (1984) Leaf processing capabilities of aquatic hyphomycetes: interspecific differences and influence on shredder feeding preferences. Oikos 42:144–154

    Article  Google Scholar 

  • Bärlocher F, Sridhar KR (2014) Association of animals and fungi in leaf decomposition. In: Jones EBG, Hyde KD, Pang KL (ed) Freshwater fungi and fungus-like organisms. De Gruyter, pp 413–442

  • Biasi C, Cogo GB, Hepp LU, Santos S (2019) Shredders prefer soft and fungal-conditioned leaves, regardless of their initial chemical traits. Iheringia Sér Zool 109:e2019004

    Article  Google Scholar 

  • Bryant JP, Chapin FS, Klein DR (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368

    Article  CAS  Google Scholar 

  • Bryant JP, Chapin FS, Reichardt PB, Clausen TP (1987) Response of winter chemical defense in Alaska paper birch and green alder to manipulation of plant carbon/nutrient balance. Oecologia 72:510–514

    Article  CAS  PubMed  Google Scholar 

  • Canhoto C, Graça MAS (1995) Food value of introduced eucalypt leaves for a Mediterranean stream detritivore: Tipula lateralis. Freshw Biol 34:209–214

    Article  Google Scholar 

  • Cao J, Ruan H (2015) Responses of the submerged macrophyte Vallisneria natans to elevated CO2 and temperature. Aquatic Biol 23:119–127

    Article  Google Scholar 

  • Carreira BM, Dias MP, Rebelo R (2014) How consumption and fragmentation of macrophytes by the invasive crayfish Procambarus clarkii shape the macrophyte communities of temporary ponds. Hydrobiologia 721:89–98

    Article  CAS  Google Scholar 

  • Carreira BM, Segurado P, Laurila A, Rebelo R (2017) Can heat waves change the trophic role of the world’s most invasive crayfish? Diet shifts in Procambarus clarkii. Plos One 12: e0183108

  • Carvalho C, Hepp LU, Palma-Silva C, Albertoni EF (2015) Decomposition of macrophytes in a shallow subtropical lake. Limnologica 53:1–9

    Article  CAS  Google Scholar 

  • Desmet NJS, Van Belleghem S, Seuntjens P, Bouma TJ, Buis K, Meire P (2011) Quantification of the impact of macrophytes on oxygen dynamics and nitrogen retention in a vegetated lowland river. Phys Chem Earth 36:479–489

    Article  Google Scholar 

  • Dhir B (2015) Status of aquatic macrophytes in changing climate: a perspective. J Environ Sci Technol 8:139–148

    Article  Google Scholar 

  • Dray MW, Crowther TW, Thomas SM, A’Bear AD, Godbold DL, Ormerod SJ, Hartley SE, Jones TH (2014) Effects of elevated CO2 on litter chemistry and subsequent invertebrate detritivore feeding responses. Plos One 9:e86246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esteves FA, Camargo AFM (1986) Sobre o papel das macrófitas aquáticas na estocagem e ciclagem de nutrientes. Acta Limnol Bras 1:273–298

    Google Scholar 

  • Feeny P (1970) Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51:565–581

    Article  Google Scholar 

  • Ferreira V, Gonçalves A, Godbold DL, Canhoto C (2010) Effect of increased atmospheric CO2 on the performance of an aquatic detritivore through changes in water temperature and litter quality. Global Change Biol 16:3284–3296

    Article  Google Scholar 

  • Findlay S (2010) Stream microbial ecology. J N Am Benthol Soc 29:170–181

    Article  Google Scholar 

  • Gairola S, Shariff NM, Bhatt A (2010) Influence of climate change on production of secondary chemicals in high altitude medicinal plants: issues needs immediate attention. J Med Plant Res 4:1825–1829

    Google Scholar 

  • Gessner MO, Chauvet E (1994) Importance of stream microfungi in controlling breakdown rates of leaf-litter. Ecology 75:1807–1817

    Article  Google Scholar 

  • Gherlenda AN, Haigh AM, Moore BD, Johnson SN, Riegler M (2015) Climate change, nutrition and immunity: effects of elevated CO2 and temperature on the immune function of an insect herbivore. J Insect Physiol 85:57–64

    Article  CAS  PubMed  Google Scholar 

  • Golladay SW, Webster JR, Benfield EF (1983) Factors affecting food utilization by a leaf shredding aquatic insect: leaf species and conditioning time. Ecography 6:157–162

    Article  Google Scholar 

  • Gonçalves JF Jr, Rezende RS, França J, Callisto M (2012) Invertebrate colonisation during leaf processing of native, exotic and artificial detritus in a tropical stream. Mar Freshwater Res 63:428–439

    Article  Google Scholar 

  • Graça MAS, Cressa C (2010) Leaf quality of some tropical and temperate tree species as food resource for stream shredders. Int Rev Hydrobiol 1:27–41

    Article  Google Scholar 

  • Graça MA, Bärlocher F, Gessner MO (2005) Methods to study litter decomposition: a practical guide. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  • Grundhöfer P, Gross GG (2001) Immunocytochemical studies on the origin and deposition sites of hydrolyzable tannins. Plant Sci 160(5):987–995

    Article  PubMed  Google Scholar 

  • Grundhöfer P, Niemetz R, Schilling G, Gross GG (2001) Biosynthesis and subcellular distribution of hydrolyzable tannins. Phytochemistry 57(6):915–927

    Article  PubMed  Google Scholar 

  • Grutters BM, Pollux BJ, Verberk WC, Bakker ES (2015) Native and non-native plants provide similar refuge to invertebrate prey, but less than artificial plants. Plos One 10:e0124455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grutters BM, Gross EM, Bakker ES (2016) Insect herbivory on native and exotic aquatic plants: phosphorus and nitrogen drive insect growth and nutrient release. Hydrobiologia 778:209–220

    Article  CAS  Google Scholar 

  • Guimberteau M, Ciais P, Ducharne A, Boisier JP, Aguiar APD, Biemans H, Deurwaerder H, Galbraith D, Kruijt B, Langerwisch F, Poveda G, Rammig A, Rodriguez DA, Tejada G, Thonicke K, Randow CV, Von Randow RCS, Zhang K, Verbeeck H (2017) Impacts of future deforestation and climate change on the hydrology of the Amazon Basin: a multi-model analysis with a new set of land-cover change scenarios. Hydrol Earth Syst Sci 21:1455–1475

    Article  Google Scholar 

  • Hagerman AE (1987) Radial diffusion method for determining tannin in plant extracts. J Chem Ecol 13:437–449

    Article  CAS  PubMed  Google Scholar 

  • Häring DA, Suter D, Amrhein N, Lüscher A (2007) Biomass allocation is an important determinant of the tannin concentration in growing plants. Ann Bot 99:111–120

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang J, Wang X, Yan E (2007) Leaf nutrient concentration, nutrient resorption and litter decomposition in an evergreen broad-leaved forest in eastern China. Forest Ecol Manag 239:150–158

    Article  Google Scholar 

  • IPCC Intergovernmental Panel on Climate Change (2007) Climate change the physical science basis. Contribution of the working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Jeong HM, Kim HR, Hong S, You YH (2018) Effects of elevated CO2 concentration and increased temperature on leaf quality responses of rare and endangered plants. J Ecol Environ. https://doi.org/10.1186/s41610-017-0061-0

    Article  Google Scholar 

  • Junk WJ (1973) Investigations on the ecology and productionbiology of the ‘floating meadows’ (Paspalo-Echonichloetum) on the Middle Amazon. II. The Aquatic fauna in the root zone of floating vegetation. Amazoniana 4:9–102

    Google Scholar 

  • Koricheva J, Larsson S, Haukioja E, Keinänen M (1998) Regulation of woody plant secondary metabolism by resource availability: hypothesis testing by means of meta-analysis. Oikos 83:212–226

    Article  CAS  Google Scholar 

  • Kuehn KA, Lemke MJ, Suberkropp K, Wetzel RG (2000) Microbial biomass and production associated with decaying leaf litter of the emergent macrophyte Juncus effusus. Limnol Oceanogr 45:862–870

    Article  CAS  Google Scholar 

  • Landeiro VL, Hamada N, Melo AS (2008) Responses of aquatic invertebrate assemblages and leaf breakdown to macroconsumer exclusion in Amazonian “terra firme” streams. Fundam Appl Limnol 172:49–58

    Article  Google Scholar 

  • Levi PS, Riis T, Alnøe AB, Peipoch M, Maetzke K, Bruus C, Baattrup-Pedersen A (2015) Macrophyte complexity controls nutrient uptake in lowland streams. Ecosystems 18:914–931

    Article  CAS  Google Scholar 

  • Lopes A, Parolin P, Piedade MT (2016) Morphological and physiological traits of aquatic macrophytes respond to water chemistry in the Amazon Basin: an example of the genus Montrichardia Crueg (Araceae). Hydrobiologia 766:1–5

    Article  CAS  Google Scholar 

  • Lopes A, Wittmann F, Schöngart J, Householder JE, Piedade MTF (2017) Modeling of regional-and local-scale distribution of the genus Montrichardia Crueg. (Araceae). Hydrobiologia 789:45–57

    Article  Google Scholar 

  • Lopes A, Ferreira AB, Pantoja PO, Parolin P, Piedade MTF (2018) Combined effect of elevated CO2 level and temperature on germination and initial growth of Montrichardia arborescens (L.) Schott (Araceae): a microcosm experiment. Hydrobiologia 814:19–30

    Article  CAS  Google Scholar 

  • Malzahn AM, Doerfler D, Boersma M (2016) Junk food gets healthier when it’s warm. Limnol Oceanogr 61:1677–1685

    Article  Google Scholar 

  • Martins RT, Silveira LS, Alves RG (2011) Colonization by oligochaetes (Annelida: Clitellata) in decomposing leaves of Eichhornia azurea (SW.) Kunth (Pontederiaceae) in a neotropical lentic system. Ann Limnol Int J Lim 47:339–346

    Article  Google Scholar 

  • Martins RT, Melo AS, Gonçalves JF Jr, Hamada N (2014) Estimation of dry mass of caddisflies Phylloicus elektoros (Trichoptera: Calamoceratidae) in a Central Amazon stream. Zoologia 31:337–342

    Article  Google Scholar 

  • Martins RT, Melo AS, Gonçalves JF Jr, Hamada N (2015) Leaf-litter breakdown in urban streams of Central Amazonia: direct and indirect effects of physical, chemical, and biological factors. Freshwater Sci 34:716–726

    Article  Google Scholar 

  • Martins RT, Melo AS, Gonçalves JF, Campos CM, Hamada N (2017a) Effects of climate change on leaf breakdown by microorganisms and the shredder Phylloicus elektoros (Trichoptera: Calamoceratidae). Hydrobiologia 789:31–44

    Article  CAS  Google Scholar 

  • Martins RT, Rezende RS, Gonçalves JF Jr, Lopes A, Piedade MTF, Cavalcante HL, Hamada N (2017b) Effects of increasing temperature and CO2 on quality of litter, shredders, and microorganisms in Amazonian aquatic systems. Plos One 12:e0188791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray TJ, Ellsworth DS, Tissue DT, Riegler M (2013) Interactive direct and plant-mediated effects of elevated atmospheric [CO2] and temperature on a eucalypt-feeding insect herbivore. Global Change Biol 19:1407–1416

    Article  CAS  Google Scholar 

  • Navarro FKSP, Gonçalves-Jr JF (2017) Effect of leaf decomposition stage and water temperature on fragmentation activity of a shredder invertebrate species in lotic ecosystems. Iheringia Sér Zool 107:e2017017

    Google Scholar 

  • Navarro FKSP, Rezende RS, Gonçalves JFJ (2013) Experimental assessment of temperature increase and presence of predator carcass changing the response of invertebrate shredders. Biota Neotrop 13:28–33

    Article  Google Scholar 

  • Paice RL, Chambers JM, Robson BJ (2016) Potential of submerged macrophytes to support food webs in lowland agricultural streams. Mar Freshwater Res 68:549–562

    Article  Google Scholar 

  • Peñuelas J, Estiarte M (1998) Can elevated CO2 affect secondary metabolism and ecosystem function? Trends Ecol Evol 13:20–24

    Article  PubMed  Google Scholar 

  • Prather AL (2003) Revision of the neotropical caddisfly genus Phylloicus (Trichoptera: Calamoceratidae). Zootaxa 275:1–214

    Article  Google Scholar 

  • Rezende RS, Petrucio MM, Gonçalves JF Jr (2014) The effects of spatial scale on breakdown of leaves in a tropical watershed. Plos One 9:e97072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothman JM, Chapman CA, Struhsaker TT, Raubenheimer D, Twinomugisha D, Waterman PG (2015) Long-term declines in nutritional quality of tropical leaves. Ecology 96:873–878

    Article  PubMed  Google Scholar 

  • Salminen JP, Karonen M (2011) Chemical ecology of tannins and other phenolics: We need a change in approach. Funct Ecol 25:325–338

    Article  Google Scholar 

  • Salminen JP, Roslin T, Karonen M, Sinkkonen J, Pihlaja K, Pulkkinen P (2004) Seasonal variation in the content of hydrolyzable tannins, flavonoid glycosides, and proanthocyanidins in oak leaves. J Chem Ecol 30:1693–1711

    Article  CAS  PubMed  Google Scholar 

  • Silveira LS, Martins RT, Alves RG (2016) Invertebrate colonization during leaf decomposition of Eichhornia azurea (Swartz) Kunth (Commelinales: Pontoderiaceae) and Salvinia auriculata Aubl. (Salvinales: Salvinaceae) in a Neotropical lentic system. EntomoBrasilis 9:10–17

    Article  Google Scholar 

  • Tant CJ, Rosemond AD, Helton AM, First MR (2015) Nutrient enrichment alters the magnitude and timing of fungal, bacterial, and detritivore contributions to litter breakdown. Freshwater Sci 34:1259–1271

    Article  Google Scholar 

  • Tonin AM, Boyero L, Monroy S, Basaguren A, Pérez J, Pearson RG, Cardinale BJ, Gonçalves JF Jr, Pozo J (2017) Stream nitrogen concentration, but not plant N-fixing capacity, modulates litter diversity effects on decomposition. Funct Ecol 31:1471–1481

    Article  Google Scholar 

  • Top SM, Preston CM, Dukes JS, Tharayil N (2017) Climate influences the content and chemical composition of foliar tannins in green and senesced tissues of Quercus rubra. Front Plant Sci 8:423

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuchman NC, Wahtera KA, Wetzel RG, Teeri JA (2003) Elevated atmospheric CO2 alters leaf litter quality for stream ecosystems: an in situ leaf decomposition study. Hydrobiologia 495:203–211

    Article  CAS  Google Scholar 

  • Volz TJ, Clausen TP (2001) Tannins in Puccinellia arctica: possible deterrents to herbivory by Canada geese. J Chem Ecol 27:725–732

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Heckathorn SA, Wang X, Philpott SM (2012) A meta-analysis of plant physiological and growth responses to temperature and elevated CO2. Oecologia 169:1–13

    Article  PubMed  Google Scholar 

  • Wang C, Zheng SS, Wang PF, Hou J (2015) Interactions between vegetation, water flow and sediment transport: A review. J Hydrodyn Ser B 27:24–37

    Article  CAS  Google Scholar 

  • Watson A, Barmuta LA (2011) Feeding-preference trials confirm unexpected stable isotope analysis results: freshwater macroinvertebrates do consume macrophytes. Mar Freshwater Res 62:1248–1257

    Article  CAS  Google Scholar 

  • Zhang S, Fu W, Zhang Z, Fan Y, Liu T (2017) Effects of elevated CO2 concentration and temperature on some physiological characteristics of cotton (Gossypium hirsutum L.) leaves. Environ Exp Bot 133:108–117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Adalberto L. Val for microcosm use, Dra. Ana M.O. Pes for Phylloicus elektoros identification, Dr. Sérgio Nunomura for lyophilizer use, Fernanda Dragan and Jéssica Oliveira for help during the experiment, and Celso Rabelo Costa and Elizabeth Rebouças for field and laboratory assistance. We thank PhD. Philip Martin Fearnside for English support. RTM and AL received fellowships from Programa de Apoio à Fixação de Doutores no Amazonas–FIXAM/AM (FAPEAM) and Programa Nacional de Pós-Doutorado-PNPD/CAPES. JFG, NH and MTFP received research grants (procs. 302957/2014-6, 307849/2014-7, and 310547/2016-4, respectively) from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The present work was supported in part by CT-Hidro/Climatic Changes/Water Resources/CNPq (Proc. 403949/2013-0), PELD MAUA (CNPq, FAPEAM), and INCT ADAPTA II funded by CNPq – Brazilian National Research Council (465540/2014-7), FAPEAM – Amazonas State Research Foundation (062.1187/2017), and CAPES–Coordination for the Improvement of Higher Education Personnel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Tavares Martins.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Luz Boyero.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, R.T., Gonçalves, J.F., Campos, C.M. et al. Leaf consumption by invertebrate aquatic shredders in the Amazon: effects of climate change and microbial conditioning. Limnology 21, 257–266 (2020). https://doi.org/10.1007/s10201-020-00609-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10201-020-00609-z

Keywords

Navigation