Skip to main content
Log in

Viability of a concentrated solar power system in a low sun belt prefecture

  • Research Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Concentrating solar power (CSP) is considered as a comparatively economical, more efficient, and large capacity type of renewable energy technology. However, CSP generation is found restricted only to high solar radiation belt and installed where high direct normal irradiance is available. This paper examines the viability of the adoption of the CSP system in a low sun belt region with a lower direct normal irradiance (DNI). Various critical analyses and plant economics have been evaluated with a lesser DNI state. The obtained results out of the designed system, subjected to low DNI are not found below par, but comparable to some extent with the performance results of such CSP plants at a higher DNI. The analysis indicates that incorporation of the thermal energy storage reduces the levelized cost of energy (LCOE) and augments the plant capacity factor. The capacity factor, the plant efficiency, and the LCOE are found to be 32.50%, 17.56%, and 0.1952 $/kWh, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Purohit I, Purohit P. Techno-economic evaluation of concentrating solar power generation in India. Energy Policy, 2010, 38(6): 3015–3029

    Article  Google Scholar 

  2. Sharma C, Sharma A K, Mullick S C, Kandpal T C. Assessment of solar thermal power generation potential in India. Renewable & Sustainable Energy Reviews, 2015, 42: 902–912

    Article  Google Scholar 

  3. IRENA website. Renewable capacity statistics 2017. 2017-11-15, available at website of irena.org

    Google Scholar 

  4. Ramdé EW, Azoumah Y, Hammond AB, Rungundu A, Tapsoba G. Site ranking and potential assessment for concentrating solar power in West Africa. Natural Resources, 2013, 4: 146–153

    Article  Google Scholar 

  5. Bishoyi D, Sudhakar K. Modeling and performance simulation of 100 MW PTC based solar thermal power plant in Udaipur India. Case Studies in Thermal Engineering, 2017, 10: 216–226

    Article  Google Scholar 

  6. Kaygusuz K. Prospect of concentrating solar power in Turkey: the sustainable future. Renewable & Sustainable Energy Reviews, 2011, 15(1): 808–814

    Article  Google Scholar 

  7. Sharma N K, Tiwari P K, Sood Y R. Solar energy in India: strategies, policies, perspectives and future potential. Renewable & Sustainable Energy Reviews, 2012, 16(1): 933–941

    Article  Google Scholar 

  8. Breyer C, Knies G. Global energy supply potential of concentrating solar power. In: Proceedings of the solar power and chemical energy systems, 2009, Berlin, Germany

    Google Scholar 

  9. Ummadisingu A, Soni M S. Concentrating solar power— technology, potential and policy in India. Renewable & Sustainable Energy Reviews, 2011, 15(9): 5169–5175

    Article  Google Scholar 

  10. Peterseim J H, White S, Tadros A, Hellwig U. Concentrated solar power hybrid plants, which technologies are best suited for hybridisation? Renewable Energy, 2013, 57: 520–532

    Article  Google Scholar 

  11. Faraz T. Benefits of concentrating solar power over solar photovoltaic for power generation in Bangladesh. In: 2nd International Conference on Developments in Renewable Energy Technology, 2012, Dhaka, Bangladesh

    Google Scholar 

  12. Arora P R. A vital role of concentrating solar power plants of Rajasthan in future electricity demand of India. International Journal of Scientific and Research Publications, 2013, 3(6): 1–7

    Google Scholar 

  13. Sahoo U, Kumar R, Pant P C, Chaudhary R. Resource assessment for hybrid solar-biomass power plant and its thermodynamic evaluation in India. Solar Energy, 2016, 139: 47–57

    Article  Google Scholar 

  14. Bhattacharjee S, Bhakta S. Analysis of system performance indices of PV generator in a cloudburst precinct. Sustainable Energy Technologies and Assessments, 2013, 4: 62–71

    Article  Google Scholar 

  15. Bhattacharjee S, Bhattacharjee R. Comprehensive solar energy resource characterization for an intricate Indian province. International Journal of Ambient Energy, 2018, online, doi: 10.1080/01430750.2018._1531257

    Google Scholar 

  16. Bhattacharjee S, Acharya S. PV-wind hybrid power option for a low wind topography. Energy Conversion and Management, 2015, 89: 942–954

    Article  Google Scholar 

  17. Hang Q, Jun Z, Xiao Y, Junkui C. Prospect of concentrating solar power in China—the sustainable future. Renewable & Sustainable Energy Reviews, 2008, 12(9): 2505–2514

    Article  Google Scholar 

  18. Charabi Y, Gastli A. GIS assessment of large CSP plant in Duqum, Oman. Renewable & Sustainable Energy Reviews, 2010, 14(2): 835–841

    Article  Google Scholar 

  19. Kuravi S, Trahan J, Goswami D Y, Rahman M M, Stefanakos E K. Thermal energy storage technologies and systems for concentrating solar power plants. Progress in Energy and Combustion Science, 2013, 39(4): 285–319

    Article  Google Scholar 

  20. Benammar S, Khellaf A, Mohammedi K. Contribution to the modeling and simulation of solar power tower plants using energy analysis. Energy Conversion and Management, 2014, 78: 923–930

    Article  Google Scholar 

  21. Turchi C S, Ma Z. Co-located gas turbine/solar thermal hybrid designs for power production. Renewable Energy, 2014, 64: 172–179

    Article  Google Scholar 

  22. Yu Q, Wang Z, Xu E. Analysis and improvement of solar flux distribution inside a cavity receiver based on multi-focal points of heliostat field. Applied Energy, 2014, 136: 417–430

    Article  Google Scholar 

  23. Boudaoud S, Khellaf A, Mohammedi K, Behar O. Thermal performance prediction and sensitivity analysis for future deployment of molten salt cavity receiver solar power plants in Algeria. Energy Conversion and Management, 2015, 89: 655–664

    Article  Google Scholar 

  24. Liu S J, Faille D, Fouquet M, El-Hefni B, Wang Y, Zhang J B, Wang Z F, Chen G F, Soler R. Dynamic simulation of a IMWe CSP tower plant with two-level thermal storage implemented with control system. Energy Procedia, 2015, 69: 1335–1343

    Article  Google Scholar 

  25. Mutuberria A, Pascual J, Guisado M V, Mallor F. Comparison of heliostat field layout design methodologies and impact on power plant efficiency. Energy Procedia, 2015, 69: 1360–1370

    Article  Google Scholar 

  26. Santos M J, Merchán R P, Medina A, Calvo Hernández A. Seasonal thermodynamic prediction of the performance of a hybrid solar gasturbine power plant. Energy Conversion and Management, 2016, 115: 89–102

    Article  Google Scholar 

  27. Trabelsi S E, Chargui R, Qoaider L, Liqreina A, Guizani A A. Techno-economic performance of concentrating solar power plants under the climatic conditions of the southern region of Tunisia. Energy Conversion and Management, 2016, 119: 203–214

    Article  Google Scholar 

  28. Astolfi M, Binotti M, Mazzola S, Zanellato L, Manzolini G. Heliostat aiming point optimization for external tower receiver. Solar Energy, 2017, 157: 1114–1129

    Article  Google Scholar 

  29. Luo Y, Du X, Yang L, Xu C, Amjad M. Impacts of solar multiple on the performance of direct steam generation solar power tower plant with integrated thermal storage. Frontiers in Energy, 2017, 11(4): 461–471

    Article  Google Scholar 

  30. Polo J, Fernández-Peruchena C, Gastón M. Analysis on the longterm relationship between DNI and CSP yield production for different technologies. Solar Energy, 2017, 155: 1121–1129

    Article  Google Scholar 

  31. Arrif T, Benchabane A, Guermoui M, Gama A, Merarda H. Optical performance study of different shapes of solar cavity receivers used in central receiver system plant. International Journal of Ambient Energy, 2018, online, doi: 10._1080/01430750.2018.1525584

    Google Scholar 

  32. Chen R, Rao Z, Liao S. Determination of key parameters for sizing the heliostat field and thermal energy storage in solar tower power plants. Energy Conversion and Management, 2018, 177: 385–394

    Article  Google Scholar 

  33. Sorgulu F, Dincer I. Design and analysis of a solar tower power plant integrated with thermal energy storage system for cogeneration. International Journal of Energy Research, 2019, 43(12): 6151–6160

    Article  Google Scholar 

  34. Fares M S B, Abderafi S. Water consumption analysis of Moroccan concentrating solar power station. Solar Energy, 2018, 172: 146–151

    Article  Google Scholar 

  35. Alonso-Montesinos J, Polo J, Ballestrín J, Batlles F J, Portillo C. Impact of DNI forecasting on CSP tower plant power production. Renewable Energy, 2019, 138: 368–377

    Article  Google Scholar 

  36. Hafez A A, Nassar Y F, Hammdan M I, Alsadi S Y. Technical and economic feasibility of utility-scale solar energy conversion systems in Saudi Arabia. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2020, 44: 213–265

    Article  Google Scholar 

  37. Collado F J, Guallar J. Two-stages optimised design of the collector field of solar power tower plants. Solar Energy, 2016, 135: 884–896

    Article  Google Scholar 

  38. Habte A, Sengupta M, Lopez A. Evaluation of the National Solar Radiation Database (NSRDB): 1998–2015. Technical Report. National Renewable Energy Lab. (NREL), Golden, CO, USA: NREL/TP-5D00-67722, 2018

    Google Scholar 

  39. Poživil P, Ackermann S, Steinfeld A. Numerical heat transfer analysis of a 50 kWth pressurized-air solar receiver. Journal of Solar Energy Engineering, 2015, 137(6): 064504

    Article  Google Scholar 

  40. Wagner M J. Simulation and predictive performance modeling of utility-scale central receiver system power plants. Dissertation for the Doctoral Degree. Madison: University of Wisconsin-Madison 2008

    Google Scholar 

  41. Wagner M J, Gilman P. Technical manual for the SAM physical trough model 2011. Technical Report. National Renewable Energy Lab. (NREL), Golden, CO, USA: NREL/TP-550-51825, 2018

    Google Scholar 

  42. Guédez R, Ferruzza D. Thermocline storage for concentrated solar power techno-economic performance evaluation of a multi-layered single tank storage for solar tower power plant. KTH School of Industrial Engineering and Management, 2015

    Google Scholar 

  43. Walter S, Packey D J, Thomas H. A manual for the economic evaluation of energy efficiency and renewable energy technologies. Technical Report. National Renewable Energy Lab. (NREL), Golden, CO, USA: NREL/TP-462-5173, 1995

    Google Scholar 

  44. Branker K, Pathak M J M, Pearce J M. A review of solar photovoltaic levelized cost of electricity. Renewable & Sustainable Energy Reviews, 2011, 15(9): 4470–4482

    Article  Google Scholar 

  45. European Commission. Concentrating Solar Power from Research to Implementation. Luxembourg: Office for Official Publications of the European Communities, 2007

    Google Scholar 

  46. NREL. Concentrating Solar Power Projects-Ivanpahsolar electric generating system. 2017-06-19, available at website of nrel.gov

    Google Scholar 

  47. NREL. Concentrating Solar Power Projects-Andasol-1. 2017-06-19, available at website of nrel.gov

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhadeep Bhattacharjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, R., Bhattacharjee, S. Viability of a concentrated solar power system in a low sun belt prefecture. Front. Energy 14, 850–866 (2020). https://doi.org/10.1007/s11708-020-0664-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-020-0664-5

Keywords

Navigation