Skip to main content
Log in

Room temperature liquid metal: its melting point, dominating mechanism and applications

  • Review Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

The room temperature liquid metal (LM) is recently emerging as a new class of versatile materials with fascinating characteristics mostly originated from its simultaneous metallic and liquid natures. The melting point is a typical parameter to describe the peculiarity of LM, and a pivotal factor to consider concerning its practical applications such as phase change materials (PCMs) and advanced thermal management. Therefore, the theoretical exploration into the melting point of LM is an essential issue, which can be of special value for the design of new LM materials with desired properties. So far, some available strategies such as molecular dynamics (MD) simulation and classical thermodynamic theory have been applied to perform correlative analysis. This paper is primarily dedicated to performing a comprehensive overview regarding typical theoretical strategies on analyzing the melting points. It, then, presents evaluations on several factors like components, pressure, size and supercooling that may be critical for melting processes of liquid metal. After that, it discusses applications associated with the characteristic of low melting points of LM. It is expected that a great many fundamental and practical works are to be conducted in the coming future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gough R C, Morishita A M, Dang J H, Moorefield M R, Shiroma W A, Ohta A T. Rapid electrocapillary deformation of liquid metal with reversible shape retention. Micro & Nano Systems Letters, 2015, 3(1): 4

    Article  Google Scholar 

  2. Jin C, Zhang J, Li X, Yang X, Li J, Liu J. Injectable 3-D fabrication of medical electronics at the target biological tissues. Scientific Reports, 2013, 3(1): 3442

    Article  Google Scholar 

  3. Liang S, Rao W, Song K, Liu J. Fluorescent liquid metal as transformable biomimetic chameleon. ACS Applied Materials & Interfaces, 2018, 10(2): 1589–1596

    Article  Google Scholar 

  4. Sen P, Kim C J. Microscale liquid-metal switches—a review. IEEE Transactions on Industrial Electronics, 2009, 56(4): 1314–1330

    Article  Google Scholar 

  5. Prokhorenko V Y, Roshchupkin V V, Pokrasin M A, Prokhorenko S V, Kotov V V. Liquid gallium: potential uses as a heat-transfer agent. High Temperature, 2000, 38(6): 954–968

    Article  Google Scholar 

  6. Ge H, Li H, Mei S, Liu J. Low melting point liquid metal as a new class of phase change material: an emerging frontier in energy area. Renewable & Sustainable Energy Reviews, 2013, 21: 331–346

    Article  Google Scholar 

  7. Liu J, Zhou Y X, Lv Y G, Li T. Liquid metal based miniaturized chip-cooling device driven by electromagnetic pump. In: ASME 2005 International Mechanical Engineering Congress and Exposition, 2005, (42177): 501–510

  8. Ge H, Liu J. Phase change effect of low melting point metal for an automatic cooling of USB flash memory. Frontiers in Energy, 2012, 6(3): 207–209

    Article  Google Scholar 

  9. Ge H, Liu J. Keeping smartphones cool with gallium phase change material. Journal of Heat Transfer, 2013, 135(5): 054503

    Article  Google Scholar 

  10. Yan J, Lu Y, Chen G, Yang M, Gu Z. Advances in liquid metals for biomedical applications. Chemical Society Reviews, 2018, 47(8): 2518–2533

    Article  Google Scholar 

  11. Yi L, Ding Y, Yuan B, Wang L, Tian L, Chen C, Liu F, Lu J, Song S, Liu J. Breathing to harvest energy as a mechanism towards making a liquid metal beating heart. RSC Advances, 2016, 6(97): 94692–94698

    Article  Google Scholar 

  12. Yi L, Jin C, Wang L, Liu J. Liquid-solid phase transition alloy as reversible and rapid molding bone cement. Biomaterials, 2014, 35 (37): 9789–9801

    Article  Google Scholar 

  13. Sun X, Sun M, Liu M, Yuan B, Gao W, Rao W, Liu J. Shape tunable gallium nanorods mediated tumor enhanced ablation through near-infrared photothermal therapy. Nanoscale, 2019, 11 (6): 2655–2667

    Article  Google Scholar 

  14. Khoshmanesh K, Tang S Y, Zhu J Y, Schaefer S, Mitchell A, Kalantar-zadeh K, Dickey M D. Liquid metal enabled microfluidics. Lab on a Chip, 2017, 17(6): 974–993

    Article  Google Scholar 

  15. Maddaluno G, Marzullo D, Mazzitelli G, Roccella S, Di Gironimo G, Zanino R. The DTT device: divertor solutions for alternative configurations including liquid metals. Fusion Engineering and Design, 2017, 122: 341–348

    Article  Google Scholar 

  16. Gao M, Gui L. Development of a fast thermal response microfluidic system using liquid metal. Journal of Micromechanics and Microengineering, 2016, 26(7): 075005

    Article  Google Scholar 

  17. Han B, Yang Y, Shi X B, Zhang G, Gong L, Xu D, Zeng H, Wang C, Gu M, Deng Y. Spontaneous repairing liquid metal/Si nanocomposite as a smart conductive-additive-free anode for lithium-ion battery. Nano Energy, 2018, 50: 359–366

    Article  Google Scholar 

  18. Liu G, Kim J Y, Wang M, Woo J Y, Wang L, Zou D, Lee J K. Soft, highly elastic, and discharge-current-controllable eutectic galliumindium liquid metal-air battery operated at room temperature. Advanced Energy Materials, 2018, 8(16): 1703652

    Article  Google Scholar 

  19. Wu J, Tang S Y, Fang T, Li W, Li X, Zhang S. A wheeled robot driven by a liquid-metal droplet. Advanced Materials, 2018, 30 (51): 1805039

    Article  Google Scholar 

  20. Yao Y Y, Liu J. Liquid metal wheeled small vehicle for cargo delivery. RSC Advances, 2016, 6(61): 56482–56488

    Article  Google Scholar 

  21. Wang D L, Gao C Y, Wang W, Sun M, Guo B, Xie H, He Q. Shape-transformable, fusible rodlike swimming liquid metal nanomachine. ACS Nano, 2018, 12(10): 10212–10220

    Article  Google Scholar 

  22. Chen S, Yang X, Cui Y, Liu J. Self-growing and serpentine locomotion of liquid metal induced by copper ions. ACS Applied Materials & Interfaces, 2018, 10(27): 22889–22895

    Article  Google Scholar 

  23. Zeng M Q, Fu L. Controllable fabrication of graphene and related two-dimensional materials on liquid metals via chemical vapor deposition. Accounts of Chemical Research, 2018, 51(11): 2839–2847

    Article  Google Scholar 

  24. Liang S T, Wang H Z, Liu J. Progress, mechanisms and applications of liquid-metal catalyst systems. Chemistry, 2018, 24 (67): 17616–17626

    Article  Google Scholar 

  25. Zavabeti A, Zhang B Y, de Castro I A, Ou J Z, Carey B J, Mohiuddin M, Datta R, Xu C, Mouritz A P, McConville C F, O’Mullane A P, Daeneke T, Kalantar-Zadeh K. Green synthesis of low-dimensional aluminum oxide hydroxide and oxide using liquid metal reaction media: ultrahigh flux membranes. Advanced Functional Materials, 2018, 28 (44): 1804057(9)

    Article  Google Scholar 

  26. Wang Q, Yu Y, Liu J. Preparations, characteristics and applications of the functional liquid metal materials. Advanced Engineering Materials, 2017, 20(5): 1700781

    Article  Google Scholar 

  27. Guo R, Tang J, Dong S, Lin J, Wang H, Liu J, Rao W. One-step liquid metal transfer printing: toward fabrication of flexible electronics on wide range of substrates. Advanced Materials Technologies, 2018, 3(12): 1800265(13)

    Article  Google Scholar 

  28. Van Meerbeek I M, Mac Murray B C, Kim J W, Robinson S S, Zou P X, Silberstein M N, Shepherd R F. Morphing metal and elastomer bicontinuous foams for reversible stiffness, shape memory, and self-healing soft machines. Advanced Materials, 2016, 28(14): 2801–2806

    Article  Google Scholar 

  29. Wada T, Geslin P A, Kato H. Preparation of hierarchical porous metals by two-step liquid metal dealloying. Scripta Materialia, 2018, 142: 101–105

    Article  Google Scholar 

  30. Wang H, Yuan B, Liang S, Guo R, Rao W, Wang X, Chang H, Ding Y, Liu J, Wang L. Plus-M: a porous liquid-metal enabled ubiquitous soft material. Materials Horizons, 2018, 5(2): 222–229

    Article  Google Scholar 

  31. Ma K Q, Liu J. Nano liquid-metal fluid as ultimate coolant. Physics Letters. [Part A], 2007, 361(3): 252–256

    Article  Google Scholar 

  32. Zhao X, Tang J, Yu Y, Liu J. Transformable soft quantum device based on liquid metals with sandwiched liquid junctions. arXiv e-prints [Online], 2017:1710.09098

  33. Tang J, Zhao X, Li J, Zhou Y, Liu J. Liquid metal phagocytosis: intermetallic wetting induced particle internalization. Advancement of Science, 2017, 4(5): 1700024

    Google Scholar 

  34. Tien C, Wur C, Lin K, Charnaya E V, Kumzerov Y A. Freezing and melting of gallium in porous glass. Solid State Communications, 1997, 104(12): 753–757

    Article  Google Scholar 

  35. Daeneke T, Khoshmanesh K, Mahmood N, de Castro I A, Esrafilzadeh D, Barrow S J, Dickey M D, Kalantar-zadeh K. Liquid metals: fundamentals and applications in chemistry. Chemical Society Reviews, 2018, 47(11): 4073–4111

    Article  Google Scholar 

  36. Markvicka E J, Bartlett M D, Huang X, Majidi C. An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics. Nature Materials, 2018, 17(7): 618–624

    Article  Google Scholar 

  37. Li X K, Li M J, Zong L, Wu X, You J, Du P, Li C. Liquid metal droplets wrapped with polysaccharide microgel as biocompatible aqueous ink for flexible conductive devices. Advanced Functional Materials, 2018, 28 (39): 1804197(8)

    Google Scholar 

  38. Lin Y, Genzer J, Li W, Qiao R, Dickey M D, Tang S Y. Sonication-enabled rapid production of stable liquid metal nanoparticles grafted with poly(1-octadecene-alt-maleic anhydride) in aqueous solutions. Nanoscale, 2018, 10(42): 19871–19878

    Article  Google Scholar 

  39. Park S, Thangavel G, Parida K, Li S, Lee P S. A stretchable and self-healing energy storage device based on mechanically and electrically restorative liquid-metal particles and carboxylated polyurethane composites. Advanced Materials, 2019, 31(1): 1805536

    Article  Google Scholar 

  40. Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts. Acta Materialia, 2017, 122: 448–511

    Article  Google Scholar 

  41. Lei Z, Liu X, Wu Y, Wang H, Jiang S, Wang S, Hui X, Wu Y, Gault B, Kontis P, Raabe D, Gu L, Zhang Q, Chen H, Wang H, Liu J, An K, Zeng Q, Nieh T G, Lu Z. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature, 2018, 563(7732): 546–550

    Article  Google Scholar 

  42. Tang S Y, Qiao R, Yan S, Yuan D, Zhao Q, Yun G, Davis T P, Li W. Microfluidic mass production of stabilized and stealthy liquid metal nanoparticles. Small, 2018, 14(21): 1800118

    Article  Google Scholar 

  43. Chu K, Song B G, Yang H I, Kim D M, Lee C S, Park M, Chung C M. Smart passivation materials with a liquid metal microcapsule as self-healing conductors for sustainable and flexible perovskite solar cells. Advanced Functional Materials, 2018, 28(22): 1800110

    Article  Google Scholar 

  44. Tan L, Zeng M, Zhang T, Fu L. Design of catalytic substrates for uniform graphene films: from solid-metal to liquid-metal. Nanoscale, 2015, 7(20): 9105–9121

    Article  Google Scholar 

  45. Wang J, Zeng M, Tan L, Dai B, Deng Y, Rümmeli M, Xu H, Li Z, Wang S, Peng L, Eckert J, Fu L. High-mobility graphene on liquid p-block elements by ultra-low-loss CVD growth. Scientific Reports, 2013, 3(1): 2670

    Article  Google Scholar 

  46. Sun N, He X, Dong K, Zhang X, Lu X, He H, Zhang S. Prediction of the melting points for two kinds of room temperature ionic liquids. Fluid Phase Equilibria, 2006, 246(1–2): 137–142

    Article  Google Scholar 

  47. Ma K, Liu J. Liquid metal cooling in thermal management of computer chips. Frontiers of Energy and Power Engineering in China, 2007, 1(4): 384–402

    Article  Google Scholar 

  48. Wang L, Liu J. Liquid metal material genome: Initiation of a new research track towards discovery of advanced energy materials. Frontiers in Energy, 2013, 7(3): 317–332

    Article  Google Scholar 

  49. Zhou K, Tang Z, Lu Y, Wang T, Wang H, Li T. Composition, microstructure, phase constitution and fundamental physicochemical properties of low-melting-point multi-component eutectic alloys. Journal of Materials Science and Technology, 2017, 33(2): 131–154

    Article  Google Scholar 

  50. Lindemann F A. The calculation of molecular vibration frequencies. Physikalische Zeitschrift, 1910, 11: 609–612

    Google Scholar 

  51. Zhang S, Zhang W. The generalized Lindemann melting law. Chinese Journal of Computational Physics, 1985, 2(1): 91–98

    Google Scholar 

  52. Bedoya-Martínez O N, Kaczmarski M, Hernández E R. Melting temperature of fcc metals using empirical potentials. Journal of Physics Condensed Matter, 2006, 18(34): 8049–8062

    Article  Google Scholar 

  53. Cahn R W. Melting from within. Nature, 2001, 413(6856): 582–583

    Article  Google Scholar 

  54. Gupta N P. On the Lindemann law of melting of solids. Solid State Communications, 1973, 13(1): 69–71

    Article  Google Scholar 

  55. Goldman V V. Debye-waller factors in rare-gas solids. Physical Review, 1968, 174(3): 1041–1045

    Article  Google Scholar 

  56. Guinea F, Rose J H, Smith J R, Ferrante J. Scaling relations in the equation of state, thermal expansion, and melting of metals. Applied Physics Letters, 1984, 44(1): 53–55

    Article  Google Scholar 

  57. Born M. Thermodynamics of crystals and melting. Journal of Chemical Physics, 1939, 7(8): 591–603

    Article  Google Scholar 

  58. Shibuta Y, Suzuki T. Melting and solidification point of fcc-metal nanoparticles with respect to particle size: a molecular dynamics study. Chemical Physics Letters, 2010, 498(4–6): 323–327

    Article  Google Scholar 

  59. Yang L, Gan X, Xu C, Lang L, Jian Z, Xiao S, Deng H, Li X, Tian Z, Hu W. Molecular dynamics simulation of alloying during sintering of Li and Pb metallic nanoparticles. Computational Materials Science, 2019, 156: 47–55

    Article  Google Scholar 

  60. Birchenall C E, Riechman A F. Heat storage in eutectic alloys. Metallurgical Transactions. A, Physical Metallurgy and Materials Science, 1980, 11(8): 1415–1420

    Google Scholar 

  61. Farkas D, Birchenall C E. New eutectic alloys and their heats of transformation. Metallurgical Transactions A, Physical Metallurgy and Materials Science, 1985, 16(3): 323–328

    Article  Google Scholar 

  62. Fu X, Shen W, Yao T, Hou W. Physical Chemistry. 5th ed. Beijing: Higher Education Press, 2015 (in Chinese)

    Google Scholar 

  63. Pan A, Wang J, Zhang X. Prediction of melting temperature and latent heat for low-melting metal PCMs. Rare Metal Materials and Engineering, 2016, 45(4): 874–880

    Article  Google Scholar 

  64. Laar J J V, Schmelzoder D. Erstarrungskurven bei binären Systemen, wenn die feste Phase ein Gemisch (amorphe feste Lösung oder Mischkristalle) der beiden Komponenten ist. Zeitschrift für Physikalische Chemie, 1908, 63U(1): 216

    Article  Google Scholar 

  65. Wang L. Theoretical and experimental studies on liquid metal functional materials for additive manufacturing. Dissertation for the Doctoral Degree. Beijing: University of Chinese Academy of Science, 2015 (in Chinese)

    Google Scholar 

  66. Qiao Z, Xu Z, Liu H. Metallurgy and Materials Calculation Physical Chemistry. Beijing: Metallurgical Industry Press, 1999 (in Chinese)

    Google Scholar 

  67. Xu Z. Material Thermodynamics. Beijing: Higher Education Press, 2009 (in Chinese)

    Google Scholar 

  68. Li Y W, Chang K K, Wang P S, Hu B, Zhang L J, Liu S H, Du Y. Calculation of phase diagram and its application. Materials Science Engineering of Powder Metallurgy, 2012, 17(1): 1–9

    Google Scholar 

  69. Easterling K E, Porter D A. S Mohamed Y. Phase Transformations in Metals and Alloys. 3rd ed. CRC Press, 2009

  70. Wen Y, Zhu R, Zhou F, et al. An overview on molecular dynamics simulation. Advances in Mechanics, 2003, 33(1): 65–73

    Google Scholar 

  71. Daw M S, Baskes M I. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 1984, 29(12): 6443–6453

    Article  Google Scholar 

  72. Etesami S A, Asadi E. Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method. Journal of Physics and Chemistry of Solids, 2018, 112: 61–72

    Article  Google Scholar 

  73. Asadi E, Asle Zaeem M, Nouranian S, Baskes M I. Two-phase solid-liquid coexistence of Ni, Cu, and Al by molecular dynamics simulations using the modified embedded-atom method. Acta Materialia, 2015, 86: 169–181

    Article  Google Scholar 

  74. Wilhelm R M. Freezing point of mercury. Scientific Papers of the Bureau of Standards, 1916, 13

  75. Greenwood N N, Earnshaw A. Chemistry of the Elements. 2nd ed. Oxford: Pergamon Press, 1984

    Google Scholar 

  76. Norrby L J. Why is mercury liquid? Or, why do relativistic effects not get into chemistry textbooks? Journal of Chemical Education, 1991, 68(2): 110–113

    Article  Google Scholar 

  77. Calvo F, Pahl E, Wormit M, Schwerdtfeger P. Evidence for low-temperature melting of mercury owing to relativity. Angewandte Chemie International Edition, 2013, 52(29): 7583–7585

    Article  Google Scholar 

  78. Abbaschian G J, Ravitz S F. Melting kinetics of gallium single crystals. Journal of Crystal Growth, 1975, 28(1): 16–20

    Article  Google Scholar 

  79. Bartis F J. The soft modes of melting. Physics Letters. [Part A], 2004, 333(5–6): 433–437

    Article  MATH  Google Scholar 

  80. Jach J, Sebba F. The melting of gallium. Transactions of the Faraday Society, 1954, 50: 226–231

    Article  Google Scholar 

  81. Boedtker O A, Force R C L, Kendall W B, Ravitz S F. Melting of gallium. Transactions of the Faraday Society, 1965, 61: 665–667

    Article  Google Scholar 

  82. Bridgman P W. Polymorphism, principally of the elements, up to 50000 kg/cm2. Physical Review, 1935, 48(11): 893–906

    Article  Google Scholar 

  83. Gong X. Eletronic structures on solid gallium. Acta Physica Sinica, 1993, 42(4): 617–625 (in Chinese)

    Google Scholar 

  84. Gong X. Ab-inition molecular dynamics studies on gallium clusters. Acta Physica Sinica, 1993, 42(2): 244–251 (in Chinese)

    Google Scholar 

  85. Bernasconi M, Chiarotti G L, Tosatti E. Ab initio calculations of structural and electronic properties of gallium solid-state phases. Physical Review. B, 1995, 52(14): 9988–9998

    Article  Google Scholar 

  86. Barman S R, Sarma D D. Electronic structures of gallium and indium across the solid-liquid transition. Physical Review. B, 1995, 51(7): 4007–4013

    Article  Google Scholar 

  87. Hakvoort G, van Reijen L L, Aartsen A J. Measurement of the thermal conductivity of solid substances by DSC. Thermochimica Acta, 1985, 93: 317–320

    Article  Google Scholar 

  88. Shaker R E, Brantley W A, Wu Q, Culbertson B M. Use of DSC for study of the complex setting reaction and microstructural stability of a gallium-based dental alloy. Thermochimica Acta, 2001, 367–368: 393–400

    Article  Google Scholar 

  89. He H, Fei G T, Cui P, Zheng K, Liang L M, Li Y, De Zhang L. Relation between size and phase structure of gallium: differential scanning calorimeter experiments. Physical Review. B, 2005, 72 (7): 073310–073313

    Article  Google Scholar 

  90. Kumar V B, Porat Z E, Gedanken A. DSC measurements of the thermal properties of gallium particles in the micron and submicron sizes, obtained by sonication of molten gallium. Journal of Thermal Analysis and Calorimetry, 2015, 119(3): 1587–1592

    Article  Google Scholar 

  91. Chen S, Wang L, Liu J. Softening theory of matter tuning atomic border to make soft materials. arXiv e-prints [Online], 2018: 1804.01340

  92. Ben-David O, Levy A, Mikhailovich B, Azulay A. Impact of rotating permanent magnets on gallium melting in an orthogonal container. International Journal of Heat and Mass Transfer, 2015, 81: 373–382

    Article  Google Scholar 

  93. Ben-David O, Levy A, Mikhailovich B, Azulay A. 3D numerical and experimental study of gallium melting in a rectangular container. International Journal of Heat and Mass Transfer, 2013, 67: 260–271

    Article  Google Scholar 

  94. Yang X H, Tan S C, Liu J. Numerical investigation of the phase change process of low melting point metal. International Journal of Heat and Mass Transfer, 2016, 100: 899–907

    Article  Google Scholar 

  95. Yang X H, Liu J. A novel method for determining the melting point, fusion latent heat, specific heat capacity and thermal conductivity of phase change materials. International Journal of Heat and Mass Transfer, 2018, 127: 457–468

    Article  Google Scholar 

  96. Wang R H, Ye Y F, Min G H, Teng X Y, Qin J Y. Study on liquid structure and viscosity of eutectic gallium-indium alloy. Chin Shu Hsueh Pao, 2001, 37(8): 801–804 (in Chinese)

    Google Scholar 

  97. Xiao X, Deng Z, Liu J. In differential scanning calorimetric study on phase transformation characteristics of gallium-based alloys. In: China Society of Engineering Thermophysics Conference, Dongguan, 2013, 123687 (in Chinese)

  98. Yu Q, Zhang Q, Zong J, Liu S, Wang X, Wang X, Zheng H, Cao Q, Zhang D, Jiang J. Identifying surface structural changes in a newly-developed Ga-based alloy with melting temperature below 10°C. Applied Surface Science, 2019, 492: 143–149

    Article  Google Scholar 

  99. Aleksandrov V D, Frolova S A. Effect of the overheating of the gallium melt on its supercooling during solidification. Russian Metallurgy (Metally), 2014, 2014(1): 14–19

    Article  Google Scholar 

  100. Turnbull D. Formation of crystal nuclei in liquid metals. Journal of Applied Physics, 1950, 21(10): 1022–1028

    Article  Google Scholar 

  101. Xiao X. Differential scanning calorimetric study on phase transformation characteristics of gallium and gallium-based alloys. Dissertation for the Doctoral Degree. Beijing: University of Chinese Academy of Science, 2013 (in Chinese)

    Google Scholar 

  102. Beaupere N, Soupremanien U, Zalewski L. Nucleation triggering methods in supercooled phase change materials (PCM), a review. Thermochimica Acta, 2018, 670: 184–201

    Article  Google Scholar 

  103. Sandnes B. The physics and the chemistry of the heat pad. American Journal of Physics, 2008, 76(6): 546–550

    Article  Google Scholar 

  104. Garai J, Chen J. Pressure effect on the melting temperature. arXiv e-prints [Online], 2009: 0906.3331

  105. Jayaraman A, Klement W Jr, Newton R C, Kennedy G C. Fusion curves and polymorphic transitions of the group III elements—aluminum, gallium, indium and thallium—at high pressures. Journal of Physics and Chemistry of Solids, 1963, 24(1): 7–18

    Article  Google Scholar 

  106. Bosio L. Crystal structures of Ga(II) and Ga(III). Journal of Chemical Physics, 1978, 68(3): 1221–1223

    Article  Google Scholar 

  107. Bernasconi M, Chiarotti G L, Tosatti E. Ab initiocalculations of structural and electronic properties of gallium solid-state phases. Physical Review. B, 1995, 52(14): 9988–9998

    Article  Google Scholar 

  108. Gallium (Ga) Crystal Structure. Datasheet from “Pauling File Multinaries Edition-2012” in Springer Materials. 2019-6, available at materials.springer website

  109. Zhang M, Yao S, Rao W, Liu J. Transformable soft liquid metal micro/nanomaterials. Materials Science and Engineering Reports, 2019, 138: 1–35

    Article  Google Scholar 

  110. Qi W H. Size effect on melting temperature of nanosolids. Physica B, Condensed Matter, 2005, 368(1–4): 46–50

    Article  Google Scholar 

  111. Nanda K K, Sahu S N, Behera S N. Liquid-drop model for the size-dependent melting of low-dimensional systems. Physical Review A., 2002, 66(1): 013208–013215

    Article  Google Scholar 

  112. Luo W, Su K, Li K, Li Q. Connection between nanostructured materials’ size-dependent melting and thermodynamic properties of bulk materials. Solid State Communications, 2011, 151(3): 229–233

    Article  Google Scholar 

  113. Turnbull D. The subcooling of liquid metals. Journal of Applied Physics, 1949, 20(8): 817

    Article  Google Scholar 

  114. Song W. Metallology. Revised ed. Beijing: Metallurgical Industry Press, 1980 (in Chinese)

    Google Scholar 

  115. Yang X H, Liu J. Advances in liquid metal science and technology in chip cooling and thermal management. Advances in Heat Transfer, 2018, 50: 187–300

    Article  Google Scholar 

  116. Zhang X D, Gao J Y, Zhang P J, Liu J. Comparison on enhanced phase change heat transfer of low melting point metal melting using different heating methods. Journal of Enhanced Heat Transfer, 2019, 26(2): 179–194

    Article  Google Scholar 

  117. Zhang X D, Yang X H, Zhou Y X, Rao W, Gao J Y, Ding Y J, Shu Q Q, Liu J. Experimental investigation of galinstan based minichannel cooling for high heat flux and large heat power thermal management. Energy Conversion and Management, 2019, 185: 248–258

    Article  Google Scholar 

  118. Fan L W, Wu Y Y, Xiao Y Q, Zeng Y, Zhang Y L, Yu Z T. Transient performance of a thermal energy storage-based heat sink using a liquid metal as the phase change material. Applied Thermal Engineering, 2016, 109: 746–750

    Article  Google Scholar 

  119. Yang X H, Tan S C, Ding Y J, Wang L, Liu J, Zhou Y X. Experimental and numerical investigation of low melting point metal based PCM heat sink with internal fins. International Communications in Heat and Mass Transfer, 2017, 87: 118–124

    Article  Google Scholar 

  120. Yang X H, Liu J. Advanced liquid metal cooling: historical developments and research frontiers. Science & Technology Review, 2018, 36(15): 54–66

    Google Scholar 

  121. Zhang X D, Sun Y, Chen S, Liu J. Unconventional hydrodynamics of hybrid fluid made of liquid metals and aqueous solution under applied fields. Frontiers in Energy, 2018, 12(2): 276–296

    Article  Google Scholar 

  122. Miner A, Ghoshal U. Cooling of high-power-density microdevices using liquid metal coolants. Applied Physics Letters, 2004, 85(3): 506–508

    Article  Google Scholar 

  123. Tang J, Wang J, Liu J, Zhou Y. A volatile fluid assisted thermopneumatic liquid metal energy harvester. Applied Physics Letters, 2016, 108(2): 023903–023906

    Article  Google Scholar 

  124. Zhang Z, Cui L, Shi X, Tian X, Wang D, Gu C, Chen E, Cheng X, Xu Y, Hu Y, Zhang J, Zhou L, Fong H H, Ma P, Jiang G, Sun X, Zhang B, Peng H. Textile display for electronic and brain-interfaced communications. Advanced Materials, 2018, 30(18): 1800323

    Article  Google Scholar 

  125. Wang J, Tenjimbayashi M, Tokura Y, Park J Y, Kawase K, Li J, Shiratori S. Bionic fish-scale surface structures fabricated via air/water interface for flexible and ultrasensitive pressure sensors. ACS Applied Materials & Interfaces, 2018, 10(36): 30689–30697

    Article  Google Scholar 

  126. Xia S, Song S, Gao G. Robust and flexible strain sensors based on dual physically cross-linked double network hydrogels for monitoring human-motion. Chemical Engineering Journal, 2018, 354: 817–824

    Article  Google Scholar 

  127. Gao Y, Ota H, Schaler E W, Chen K, Zhao A, Gao W, Fahad H M, Leng Y, Zheng A, Xiong F, Zhang C, Tai L C, Zhao P, Fearing R S, Javey A. Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring. Advanced Materials, 2017, 29 (39): 1701985

    Article  Google Scholar 

  128. Jeong Y R, Kim J, Xie Z, Xue Y, Won S M, Lee G, Jin S W, Hong S Y, Feng X, Huang Y, Rogers J A, Ha J S. A skin-attachable, stretchable integrated system based on liquid GaInSn for wireless human motion monitoring with multi-site sensing capabilities. NPG Asia Materials, 2017, 9(10): e443

    Article  Google Scholar 

  129. Jian M Q, Xia K L, Wang Q, Yin Z, Wang H M, Wang C Y, Xie H H, Zhang M C, Zhang Y Y. Flexible and highly sensitive pressure sensors based on bionic hierarchical structures. Advanced Functional Materials, 2017, 27(9): 1606066

    Article  Google Scholar 

  130. Kim S, Oh J, Jeong D, Park W, Bae J. Consistent and reproducible direct ink writing of eutectic gallium-indium for high-quality soft sensors. Soft Robotics, 2018, 5(5): 601–612

    Article  Google Scholar 

  131. Kweon O Y, Lee S J, Oh J H. Wearable high-performance pressure sensors based on three-dimensional electrospun conductive nanofibers. NPG Asia Materials, 2018, 10(6):540–551

    Article  Google Scholar 

  132. Jeong Y R, Lee G, Park H, Ha J S. Stretchable, skin-attachable electronics with integrated energy storage devices for biosignal monitoring. Accounts of Chemical Research, 2019, 52(1): 91–99

    Article  Google Scholar 

  133. Wang C, Wang C, Huang Z, Xu S. Materials and structures toward soft electronics toward soft electronics. Advanced Materials, 2018, 30(50): 1801368

    Article  Google Scholar 

  134. Dickey M D. Stretchable and soft electronics using liquid metals. Advanced Materials, 2017, 29(27): 1606425–1606443

    Article  Google Scholar 

  135. Kang S, Cho S, Shanker R, Lee H, Park J, Um D S, Lee Y, Ko H. Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones. Science Advances, 2018, 4(8): eaas8772

    Article  Google Scholar 

  136. Liu J, Wang L. Liquid Metal 3D Printing: Principles and Application. Shanghai: Shanghai Science & Technology Press, 2018 (in Chinese)

    Google Scholar 

  137. Zheng Y, He Z, Gao Y, Liu J. Direct desktop printed-circuits-on-paper flexible electronics. Scientific Reports, 2013, 3(1): 1786

    Article  Google Scholar 

  138. Zhang Q, Gao Y, Liu J. Atomized spraying of liquid metal droplets on desired substrate surfaces as a generalized way for ubiquitous printed electronics. Applied Physics. A, Materials Science & Processing, 2014, 116(3): 1091–1097

    Article  Google Scholar 

  139. Zheng Y, He Z Z, Yang J, Liu J. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism. Scientific Reports, 2014, 4: 4588

    Article  Google Scholar 

  140. Wang X, Liu J. Recent advancements in liquid metal fexible printed electronics: properties, technologies, and applications. Micromachines, 2016, 7(12): 206

    Article  Google Scholar 

  141. Wang Q, Yu Y, Yang J, Liu J. Fast fabrication of flexible functional crcuits based on liquid metal dual-trans printing. Advanced Materials, 2015, 27(44): 7109–7116

    Article  Google Scholar 

  142. Boczkal G. Electrons charge concentration and melting point of bcc metals. Materials Letters, 2014, 134: 162–164

    Article  Google Scholar 

  143. Gunawardana K G, Wilson S R, Mendelev M I, Song X. Theoretical calculation of the melting curve of Cu-Zr binary alloys. Physical Review, 2014, 90 (5–1): 052403

    Google Scholar 

  144. Boczkal G. Melting point of metals In relation to electron charge density. Archives of Metallurgy and Materials, 2015, 60 (3): 2457–2460

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China under Key Project (Grant No. 91748206), Dean’s Research Funding of the Chinese Academy of Sciences, and the Frontier Project of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Zhang, C., Liu, T. et al. Room temperature liquid metal: its melting point, dominating mechanism and applications. Front. Energy 14, 81–104 (2020). https://doi.org/10.1007/s11708-019-0653-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-019-0653-8

Keywords

Navigation