Skip to main content
Log in

Soot size distribution in lightly sooting premixed flames of benzene and toluene

  • Research Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

The evolution of particle size distribution function (PSDF) of soot in premixed flames of benzene and toluene was studied on a burner stabilized stagnation (BSS) flame platform. The cold gas velocities were changed to hold the maximum flame temperatures of different flames approximately constant. The PSDFs of all the test flames exhibited a bimodal distribution, i.e., a small-size nucleation mode and a large-size accumulation mode. It was observed that soot nucleation and particle growth in the benzene flame were stronger than those in the toluene flame at short residence times. At longer residence times, the PSDFs of the two flames were similar, and the toluene flame showed a larger particle size distribution range and a higher particle volume fraction than the benzene flame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brunekreef B, Holgate S T. Air pollution and health. Lancet, 2002, 360(9341): 1233–1242

    Article  Google Scholar 

  2. Omidvarborna H, Kumar A, Kim D S. Recent studies on soot modeling for diesel combustion. Renewable & Sustainable Energy Reviews, 2015, 48: 635–647

    Article  Google Scholar 

  3. Zhao F, Yang W, Zhou D, Yu W, Li J, Tay K L. Numerical modelling of soot formation and oxidation using phenomenological soot modelling approach in a dual-fueled compression ignition engine. Fuel, 2017, 188: 382–389

    Article  Google Scholar 

  4. Resitoglu I A, Altinisik K, Keskin A. The pollutant emissions from diesel-engine vehicles and exhaust after treatment systems. Clean Technologies and Environmental Policy, 2015, 17(1): 15–27

    Article  Google Scholar 

  5. EUR-Lex Website. Council Directive 91/441/EEC of 26 June 1991 amending Directive 70/220/EEC on the approximation of the laws of the Member States relating to measures to be taken against air pollution by emissions from motor vehicles. 1991, available at website of eur-lex.europa.eu

    Google Scholar 

  6. EUR-Lex Website. Commission Regulation (EU) No 459/2012 of 29 May 2012 amending Regulation (EC) No 715/2007 of the European Perliament and of the Council and Commission Regulation (EC) No 692/2008 as regards emissions from light passenger and commercial vehicles (Euro 6). 2012-06-01, available at website of eur-lex.europa.eu

    Google Scholar 

  7. Frenklach M, Clary D W, Gardiner W C Jr, Stein S E. Effect of fuel structure on pathways to soot. Symposium (International) on Combustion, 1986, 21(1):1067–1076

    Article  Google Scholar 

  8. Wang Y, Makwana A, Iyer S, Linevsky M, Santoro R J, Litzinger T A, O'Connor J. Effect of fuel composition on soot and aromatic species distributions in laminar, co-flow flames. Part ai]1._Non-premixed fuel. Combustion and Flame, 2018, 189: 443–455

    Article  Google Scholar 

  9. Sidebotham G W, Glassman I. Flame temperature, fuel structure, and fuel concentration effects on soot formation in inverse diffusion flames. Combustion and Flame, 1992, 90(3-4): 269–283

    Article  Google Scholar 

  10. Butler J D, Crossley P. Reactivity of poly cyclic aromatic hydrocarbons adsorbed on soot particles. Atmospheric Environment, 1981, 15(1): 91–94

    Article  Google Scholar 

  11. Sobotowski R A, Butler A D, Guerra Z. A pilot study of fuel impacts on PM emissions from light-duty gasoline vehicles. SAE International Jurnal of Fuels and Lubricants, 2015, 8(1): 214–233

    Article  Google Scholar 

  12. DeWitt M J, Corporan E, Graham J, Minus D. Effects of aromatic type and concentration in Fischer-Tropsch fuel on emissions production and material compatibility. Energy & Fuels, 2008, 22(4): 2411–2418

    Article  Google Scholar 

  13. Short D Z, Vu D, Durbin T D, Karavalakis G, Asa-Awuku A. Components of particle emissions from light-duty spark-ignition vehicles with varying aromatic content and octane rating in gasoline. Environmental Science & Technology, 2015, 49(17): 10682–10691

    Article  Google Scholar 

  14. Richter H, Granata S, Green W H, Howard J B. Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/ argon low-pressure flame. Proceedings of the Combustion Institute, 2005, 30(1): 1397–1405

    Article  Google Scholar 

  15. Bachmann M, Wiese W, Homann K H. Fullerenes versus soot in benzene flames. Combustion and Flame, 1995, 101(4): 548–550

    Article  Google Scholar 

  16. Wei J, Song C, Lv G, Song J, Wang L, Pang H. A comparative study of the physical properties of in-cylinder soot generated from the combustion of n-heptane and toluene/n-heptane in a diesel engine. Proceedings of the Combustion Institute, 2015, 35(2): 1939–1946

    Article  Google Scholar 

  17. Hansen N, Schenk M, Moshammer K, Kohse-Hoinghaus K. Investigating repetitive reaction pathways for the formation of polycyclic aromatic hydrocarbons in combustion processes. Combustion and Flame, 2017, 180: 250–261

    Article  Google Scholar 

  18. Camacho J. Development of a novel heterogeneous flow reactor-Soot formation and nanoparticle catalysis. Dissertation for the Doctoral Degree. Los Angeles: University of Southern California, 2013

    Google Scholar 

  19. Simmons B, Williams A. A shock tube investigation of the rate of soot formation for benzene, toluene, and toluene/n-heptane mixtures. Combustion and Flame, 1988, 71(3): 219–232

    Article  Google Scholar 

  20. Ergut A, Levendis Y A, Richter H, Howard J B, Carlson J. The effect of equivalence ratio on the soot onset chemistry in one-dimensional, atmospheric-pressure, premixed ethylbenzene flames. Combustion and Flame, 2007, 151(1-2): 173–195

    Article  Google Scholar 

  21. Gigone B, Karatas A E, Gulder O L. Soot aggregate morphology in coflow laminar ethylene diffusion flames at elevated pressures. Proceedings of the Combustion I.stitute, 2019, 37(1): 841–848

    Article  Google Scholar 

  22. Maricq M M. A comparison of soot size and charge distributions from ethane, ethylene, acetylene, and benzene/ethylene premixed flames. Combustion and Flame, 2006, 144(4): 730–743

    Article  Google Scholar 

  23. Tang Q, Ge B, Ni Q, Nie B, You X. Soot formation characteristics of n-heptane/toluene mixtures in laminar premixed burner-stabilized stagnation flames. Combustion and Flame, 2018, 187: 239–246

    Article  Google Scholar 

  24. Abid A D, Tolmachoff E D, Phares D J, Wang H, Liu Y, Laskin A. Size distribution and morphology of nascent soot in premixed ethylene flames with and without benzene doping. Proceedings of the Combustion Institute, 2009, 32(1): 681–688

    Article  Google Scholar 

  25. Echavarria C A, Sarofim A F, Lighty J A S, D'Anna A. Evolution of soot size distribution in premixed ethylene/air and ethylene/ benzene/air flames: experimental and modeling study. Combustion and Flame, 2011, 158(1): 98–104

    Article  Google Scholar 

  26. Lin B, Gu H, Guan B, Han D, Gu C, Huang Z, Lin H. Size evolution of soot particles from gasoline and n-heptane/toluene blend in a burner stabilized stagnation flame. Fuel, 2017, 203: 135–144

    Article  Google Scholar 

  27. Shaddix C R. Correcting thermocouple measurements for radiation loss: a critical review. Aibuquerque, NM, 1999, HTD99-HT282

    Google Scholar 

  28. Peterson R C, Laurendeau N M. The emittance of yttrium-beryllium oxide thermocouple coating. Combustion and Flame, 1985, 60(3): 279–284

    Article  Google Scholar 

  29. Shao C, Guan B, Lin B, Gu H, Gu C, Li Z, Lin H, Huang Z. Effect of methane doping on nascent soot formation in ethylene-based laminar premixed flames. Fuel, 2016, 186: 422–429

    Article  Google Scholar 

  30. Lin H, Gu C, Camacho J, Lin B, Shao C, Li R, Gu H, Guan B, Wang H, Huang Z. Mobility size distributions of soot in premixed propene flames. Combustion and Flame, 2016, 172: 365–373

    Article  Google Scholar 

  31. Smooke M D, Puri I K, Seshadri K A. A comparison between numerical calculations and experimental measurements of the structure of a counterflow diffusion flame burning diluted methane in diluted air. Symposium (International) on Combustion, 1988, 21(1): 1783–1792

    Article  Google Scholar 

  32. Kee R J, Miller J A, Evansl G H, Dixon-Lewis G. A computational model of the structure and extinction of strained, opposed flow, premixed methane-air flames. Symposium (International) on Combustion, 1989, 22(1): 1479–1494

    Article  Google Scholar 

  33. Lutz A E, Kee R J, Grcar J F, Rupley F M. OPPDIF: a Fortran program for computing opposed-flow diffusion flames. Sandia National Laboratories, Albu-querque, New Mexico, 1996

    Google Scholar 

  34. Zhao B, Yang Z, Li Z, Johnston M V, Wang H. Particle size distribution function of incipient soot in laminar premixed ethylene flames: effect of flame temperature. Proceedings of the Combustion Institute, 2005, 30(1): 1441–1448

    Article  Google Scholar 

  35. Abid A D, Heinz N, Tolmachoff E D, Phares D J, Campbell C S, Wang H. On evolution of particle size distribution functions of incipient soot in premixed ethylene-oxygen-argon flames. Combustion and Flame, 2008, 154(4): 775–788

    Article  Google Scholar 

  36. Waldmann L. The force of a non-homogeneous gas on small suspended spheres. Zeitshrift fur Naturforschung Section A-A Journal of Physical Sciences, 1959, 14a: 589–599

    Google Scholar 

  37. Li Z, Wang H. Drag force, diffusion coefficient, and electric mobility of small particles II: application. Physical Review. E, 2003, 68(6): 061207

    Article  Google Scholar 

  38. Lai F S, Friedlander S K, Pich J, Hidy G M. The self-preserving particle size distribution for Brownian coagulation in the free-molecule regime. Journal of Colloid and Interface Science, 1972, 39(2): 395–405

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51776124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Zhai, J., Lin, B. et al. Soot size distribution in lightly sooting premixed flames of benzene and toluene. Front. Energy 14, 18–26 (2020). https://doi.org/10.1007/s11708-020-0663-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-020-0663-6

Keywords

Navigation