Skip to main content

Advertisement

Log in

Cosmological consequences of a classical finite-sized electron model

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

For a finite-sized classical electron, energy conservation requires that the Born self-energy \(U_{e}^{\mathit{Born}}\), due to the electric field which surrounds the electron, be added to the electron’s rest mass energy \(m_{e}c^{2}\). \(U_{e}^{\mathit{Born}}\), which scales inversely with the electron radius \(R_{e}\), is very large and, in fact, would dominate all other energy contributions within the intergalactic medium (IGM). By taking into account the ionization fraction \(\nu _{e}\) of atomic hydrogen in the IGM Dark Energy can be quantitatively explained using \(U_{e}^{\mathit{Born}}\) without the necessity of a cosmological constant \(\varLambda \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bahcall, N.A.: Proc. Natl. Acad. Sci. USA 112, 12243 (2015)

    ADS  Google Scholar 

  • Bjorken, J.D., Drell, S.D.: Relativistic Quantum Mechanics. McGraw-Hill, New York (1964)

    MATH  Google Scholar 

  • Bourilkov, D.: Phys. Rev. D 64, 071701R (2001)

    ADS  Google Scholar 

  • Brodsky, S.J., Drell, S.D.: Phys. Rev. D 22, 2236 (1980)

    ADS  Google Scholar 

  • Bykov, A.M., Paerels, F.B.S., Petrosian, V.: Space Sci. Rev. 134, 141 (2008)

    ADS  Google Scholar 

  • Caldwell, R.R., Kamionkowski, M.: Annu. Rev. Nucl. Part. Sci. 59, 397 (2009)

    ADS  Google Scholar 

  • Cen, R., Ostriker, J.P.: Astrophys. J. 514, 1 (1999)

    ADS  Google Scholar 

  • Cen, R., Ostriker, J.P.: Astrophys. J. 650, 560 (2006)

    ADS  Google Scholar 

  • Dave, R., et al.: Astrophys. J. 552, 473 (2001)

    ADS  Google Scholar 

  • Dirac, P.A.M.: Sci. Am. 208, 45 (1963)

    ADS  Google Scholar 

  • Dyson, F.: Phys. Rev. 75, 486 (1949a)

    ADS  MathSciNet  Google Scholar 

  • Dyson, F.: Phys. Rev. 75, 1736 (1949b)

    ADS  MathSciNet  Google Scholar 

  • Fang, T., et al.: Astrophys. J. 714, 1715 (2010)

    ADS  Google Scholar 

  • Farooq, O., Madiyar, F.R., Crandall, S., Ratra, B.: Astrophys. J. 835, 1 (2017)

    Google Scholar 

  • Feynman, R.P.: Phys. Rev. 76, 769 (1949a)

    ADS  MathSciNet  Google Scholar 

  • Feynman, R.P.: Phys. Rev. 76, 749 (1949b)

    ADS  Google Scholar 

  • Feynman, R.P.: Phys. Rev. 80, 440 (1950)

    ADS  MathSciNet  Google Scholar 

  • Feynman, R.P.: QED: The Strange Theory of Light and Matter. Princeton University Press, Princeton (1985)

    Google Scholar 

  • Feynman, R.P., Leighton, R., Sands, M.: The Feynman Lectures on Physics, Vol. II. Addison-Wesley, Reading (1964). Chaps. 8 and 28

    Google Scholar 

  • Frieman, J.A., Turner, M.S., Huterer, D.: Annu. Rev. Astron. Astrophys. 46, 385 (2008)

    ADS  Google Scholar 

  • Fukugita, M., Peebles, P.J.E.: Astrophys. J. 616, 643 (2004)

    ADS  Google Scholar 

  • Gabrielse, G., Hanneke, D., Kinoshita, T., Nio, M., Odom, B.: Phys. Rev. Lett. 97, 030802 (2006)

    ADS  Google Scholar 

  • Genova-Santos, R., Atrio-Barandela, F., Kitaura, F.-S., Mucket, J.P.: Astrophys. J. 806, 1 (2015)

    Google Scholar 

  • Halliwell, J.J.: Contemp. Phys. 46, 93 (2005)

    ADS  Google Scholar 

  • Hanneke, D., Hoogerheide, S.F., Gabrielse, G.: Phys. Rev. A 83, 052122 (2011)

    ADS  Google Scholar 

  • Jackson, J.D.: Classical Electrodynamics. John Wiley and Sons, Inc., New York (1962)

    MATH  Google Scholar 

  • Liddle, A.R., Lyth, D.H.: Cosmological Inflation and Large-Scale Structure. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  • Mahanty, J., Ninham, B.W.: Dispersion Forces. Academic Press, London (1976)

    Google Scholar 

  • Malavasi, N., et al.: Mon. Not. R. Astron. Soc. 465, 3817 (2017)

    ADS  Google Scholar 

  • Matarrese, S., Colpi, M., Gorini, V., Moschella, U. (eds.): Dark Energy and Dark Matter: A Challenge to Modern Cosmology 2011th edn. Springer, Bristol (2011)

    MATH  Google Scholar 

  • Nicastro, F., Mathur, S., Elvis, M.: Science 319, 55 (2008)

    ADS  Google Scholar 

  • Ninham, B.W., Lo Nostro, P.: Molecular Forces and Self Assembly. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  • Peebles, P.J.E., Ratra, B.: Rev. Mod. Phys. 75, 559 (2003)

    ADS  Google Scholar 

  • Peebles, P.J.E., Page, L.A. Jr., Partridge, R.B.: Finding the Big Bang. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  • Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)

    ADS  Google Scholar 

  • Planck Collaboration: Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. (2018), in press. arXiv:1807.06209

  • Riess, A.G., et al.: Astron. J. 16, 1009 (1998)

    ADS  Google Scholar 

  • Riess, A.G., et al.: Astrophys. J. 826, 56 (2016)

    ADS  Google Scholar 

  • Sakurai, J.J.: Advanced Quantum Mechanics. Benjamin/Cummings, Menlo Park (1967)

    Google Scholar 

  • Schwinger, J.: Phys. Rev. 73, 416 (1948a)

    ADS  Google Scholar 

  • Schwinger, J.: Phys. Rev. 74, 1439 (1948b)

    ADS  MathSciNet  Google Scholar 

  • Sick, I.: Prog. Part. Nucl. Phys. 55, 440 (2005)

    ADS  Google Scholar 

  • Spergel, D.N., et al.: Astrophys. J. Suppl. Ser. 170, 377 (2007)

    ADS  Google Scholar 

  • Tomonaga, S.: Prog. Theor. Phys. 1, 27 (1946)

    ADS  Google Scholar 

  • Wang, B., Abdalla, E., Atrio-Barandela, F., Pavón, D.: Rep. Prog. Phys. 79, 096901 (2016)

    ADS  Google Scholar 

  • Wise, J.H.: Contemp. Phys. 60, 145 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

The author thanks Professors Bharat Ratra, Larry Weaver, and Louis Crane for extensive discussions and to numerous anonymous referees for useful comments. The nucleus for this current contribution originated from an enlightening Peterson Lecture, on “Inflationary Cosmology: Is our Universe part of a Multiverse?”, given by Professor Alan Guth at Kansas State University in Spring 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce M. Law.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Law, B.M. Cosmological consequences of a classical finite-sized electron model. Astrophys Space Sci 365, 64 (2020). https://doi.org/10.1007/s10509-020-03774-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-020-03774-w

Keywords

Navigation