Skip to main content
Log in

Comparison of Rheological Characteristics and Mechanical Properties of Fossil-Based and Bio-Based Polycarbonate

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Fossil-based PC, bisphenol-A polycarbonate (BPA-PC), is polymerized using bisphenol-A, which is derived from fossil-fuel based chemicals. Bio-based polycarbonate (bio-based PC) is polymerized using isosorbide, which is taken from plants. Accordingly, bio-based PC does not contain toxic polymerization chemicals. The rheological characteristics of fossil-based PC and bio-based PC samples, including viscosity, storage and loss moduli, and melt tension, were studied and compared. The mechanical properties of tensile behavior and impact strength were also measured and discussed. The shear viscosity curves and storage and loss moduli patterns of the bio-based PC were found to be somewhat different from those of fossil-based PC. The bio-based PC had higher tensile strength and elastic modulus than the fossil-based PC. The fossil-based PC exhibited a stress jump in the high strain region of the stress-strain curve, while the bio-based PC exhibited no stress jumps. The bio-based PC had a lower impact strength than the fossil-based PC. The cross-section of the fractured impact specimen of the bio-based PC showed only mirror regions, while that of the fossil-based PC showed both mirror regions and misted regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. F. Christopher and D. W. Fox, Reinhold Plastics Applications Series-Polycarbonate. Reinnhold Publishing, NY, 1962.

    Google Scholar 

  2. H. I. Lee and J. S. Lee, Polym. Sci. Technol., 4, 423 (1993).

    Google Scholar 

  3. M. Alger, Polymer Science Dictionary, 2nd ed., Chapman & Hall, New York, 1997.

    Google Scholar 

  4. S. Fukuoka, M. Tojo, H. Hachiya, M. Aminaka, and K. Hasegawa, Polym. J., 39, 91 (2007).

    CAS  Google Scholar 

  5. Q. Li, W. Zhu, C. Li, G. Guan, D. Zhang, Y. Xiao, and L. Zheng, J. Polym. Sci. Part A: Polym. Chem., 51, 1387 (2013).

    CAS  Google Scholar 

  6. T. Setoyama, Catalysis Surveys from Asia, 18, 183 (2014).

    CAS  Google Scholar 

  7. K. Kimura and Y. Horikoshi, Fujitsu Sci. Tech. J., 41, 173 (2005).

    CAS  Google Scholar 

  8. J. Jegal, K. M. Cho, and B. K. Song, Polym. Sci. Technol., 19, 307 (2008).

    CAS  Google Scholar 

  9. Y. S. You, M. K. Kim, M. J. Park, and S. W. Choi, Clean Technol., 20, 205 (2014).

    Google Scholar 

  10. N.-H. Park, D. H. Kim, B. Park, E. S. Jeong, and J. W. Lee, Biomater. Res., 17, 114 (2013).

    Google Scholar 

  11. D. G. Legrand, and J. T. Bendler, Handbook of Polycarbonate Science and Technology. Marcel Dekker, Inc., New York, 2000.

    Google Scholar 

  12. S. J. Choi, K. H. Yoon, H. S. Kim, S. Y. Yoo, and Y. C. Kim, Polym. Korea, 35, 356 (2011).

    CAS  Google Scholar 

  13. Y. S. You, Y. S. Oh, S. H. Hong, and S. W. Choi, Clean Technol., 21, 141 (2015).

    Google Scholar 

  14. J. H. Park, J. C. Hyun, W. N. Kim, S. R. Kim, and S. C. Ryu, Macromol. Res., 10, 135 (2002).

    CAS  Google Scholar 

  15. T. A. Osswald and G. Menges, Material Science of Polymers for Engineers. Hanser, NY, 1995.

    Google Scholar 

  16. M.-Y. Lyu, J. S. Lee, and Y. Pae, J. Appl. Polym. Sci., 80, 1814 (2001).

    CAS  Google Scholar 

  17. M.-Y. Lyu, J. S. Lee, and Y. Pae, Polym. Korea, 24, 38 (2000).

    CAS  Google Scholar 

  18. J. H. Park, M. S. Koo, S. H. Cho, and M.-Y. Lyu, Macromol. Res., 25, 1135 (2017).

    Google Scholar 

  19. T. G. Fox and P. J. Flory, J. Am. Chem. Soc., 70, 2384 (1948).

    CAS  Google Scholar 

  20. T. G. Fox and P. J. Flory, J. Appl. Phys., 21, 581 (1950).

    CAS  Google Scholar 

  21. T. G. Fox and P. J. Flory, J. Phys. Chem., 55, 221 (1951).

    CAS  Google Scholar 

  22. J. L. White, Principles of Polymer Engineering Rheology. John Wiley & Sons, NY, 1990.

    Google Scholar 

  23. J. R. Schaefgen and P. J. Flory, J. Am. Chem. Soc., 70, 2709 (1948).

    CAS  Google Scholar 

  24. T. Masuda, Y. Ohta and S. Onogi, Macromolecules, 4, 763 (1971).

    CAS  Google Scholar 

  25. T. Masuda, Y. Saito, Y. Ohta and S. Onogi, J. Soc. Mater. Sci. Japan, 22, 438 (1973).

    CAS  Google Scholar 

  26. V. M. Folt, Rubber Chem. Technol., 42, 1294 (1969).

    CAS  Google Scholar 

  27. G. Kraus and J. T. Gruver, J. Polym. Sci., P-A, 3, 102 (1965).

    Google Scholar 

  28. H. G. Hansen and J. B. Jansma, ACS Polymer Preprints, 20, 157 (1979).

    CAS  Google Scholar 

  29. E. Riande, R. Diaz-Callejo, M. G. Prolongo, R. M. Masegosa, and C. Salom, Polymer Viscoelasticity. Marcel Dekker, New York, 2000.

    Google Scholar 

  30. E. S. Sherman, A. Ram, and S. Kenig, Polym. Eng. Sci., 22, 457 (1982).

    CAS  Google Scholar 

  31. I. Mondragon and J. Nazabal, Polym. Eng. Sci., 25, 178 (1985).

    CAS  Google Scholar 

  32. R. W. Avakian, and R. B. Allen, Polym. Eng. Sci., 25, 462 (1985).

    CAS  Google Scholar 

  33. T. Taguchi, R. Miike, T. Hatakeyama, and H. Saito, Polym. Eng. Sci., 58, 683 (2018).

    CAS  Google Scholar 

  34. H. Kim, D. S. Lee, J. S. Lim, and M.-Y. Lyu, Polym. Korea, 36, 59 (2012).

    CAS  Google Scholar 

  35. W. S. Choi, Effects of Ester Compatibilizers on the Mechanical Properties of PLA/PC Blends. Master’s Thesis, University of Soongsil, 2014.

  36. T. L. Anderson, Fracture Mechanics-Second Edition-Fundamentals and Applications. CRC Press, Boca Raton, 1995.

    Google Scholar 

  37. Y. H. Han, S. O. Han, D. Cho, and H.-I. Kim, Macromol. Res., 16, 253 (2008).

    CAS  Google Scholar 

  38. S. Spoljaric, T. K. Goh, A. Blencowe, G. G. Qiao, and R. A. Shanks, Macromol. Chem. Phys., 212, 1778 (2011).

    CAS  Google Scholar 

  39. M.-Y. Lyu, D. M. Park, H. J. Kim, and J. R. Yoon, Elastomers and Composites, 41, 223 (2006).

    CAS  Google Scholar 

  40. J. H. Kim and M.-Y. Lyu, Polym. Eng. Sci., 54, 2441 (2014).

    CAS  Google Scholar 

  41. M.-Y. Lyu, H. C. Kim, J. S. Lee, H. C. Shin, and Y. Pae, Int. Polym. Proc., 16, 72 (2001).

    CAS  Google Scholar 

  42. C. Bonnebat, G. Roullet, A. J. de Vries, Polym. Eng. Sci., 21, 189 (1981).

    CAS  Google Scholar 

  43. S. A. Jabarin, Polym. Eng. Sci., 32, 1341 (1992).

    CAS  Google Scholar 

  44. F. Rietsch, Eur. Polym. J., 26, 1077 (1990).

    CAS  Google Scholar 

  45. B. H. Lee and J. I. Ryu, Trans. KSAE., 11, 64 (2003).

    Google Scholar 

  46. X. F. Yao, H. Y. Yeh, and W. Xu, Int. J. Solid Struct., 43, 1189 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Young Lyu.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgment: This work was supported by the Industrial Fundamental Technology Development Program funded by the Ministry of Trade, Industry and Energy (MOTIE) of Korea (10051680, Development of high strength and environmental friendly polymer for 3D printing).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, Y.H., Lyu, MY. Comparison of Rheological Characteristics and Mechanical Properties of Fossil-Based and Bio-Based Polycarbonate. Macromol. Res. 28, 299–309 (2020). https://doi.org/10.1007/s13233-020-8093-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8093-1

Keywords

Navigation