Skip to main content
Log in

Antibacterial Activity of pH-Sensitive Silver(I)/Poly(2-hydroxyethyl acrylate/itaconic acid) Hydrogels

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Since the management of infections becomes prior global healthcare issue, the “post antibiotic era” requires innovative and interdisciplinary approach. As an alternative to widespread and, nowdays mostly uneffective, antibiotic treatment of infections, the series of hydrogels were developed and further investigated as novel antibacterial biomaterials. The hydrogels based on 2-hydroxyethyl acrylate and itaconic acid were synthesized and used for silver(I) ions incorporation. The structural, thermal and swelling characteristics were examined by Fourier transform infrared spectroscopy, differential scanning calorimetry, and swelling study conducted in wide range of pHs at 37 °C. Results confirmed the expected structure, while the glass transition temperatures (Tg) of the hydrogels were detected in range of 10–37 °C. The in vitro release study revealed suitability of these pH sensitive hydrogels as the systems for topical delivery of silver(I) ions. Performed MTT test and Comet assay proved biocompatibility of the hydrogels, as well as the absence of acute genotoxic effect on human fibroblast cells (MRC-5). The hydrogels exhibited satisfying antibacterial activity against methicillin sensitive Staphylococcus aureus (MSSA) and methicillin resistant Staphylococcus aureus (MRSA), indicating the capacity to treat the life-threatening infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Greenhalgh, N. C. Dempsey-Hibbert, and K. A. Whitehead, Int. Biodeterior. Biodegrad., 136, 1 (2019).

    CAS  Google Scholar 

  2. A. Munoz-Bonilla and M. Fernández-García, Prog. Polym. Sci., 37, 281 (2012).

    CAS  Google Scholar 

  3. K. Vasilev, A. Cavallaro, and P. Zilm, Molecule., 23, 585 (2018).

    Google Scholar 

  4. K. R. Yang, Q. Han, B. Chen, Y. Zheng, K. Zhang, Q. Li, and J. C. Wang, Int. J. Nanomed., 13, 2217 (2018).

    CAS  Google Scholar 

  5. B. Li and T. J. Webster, J. Orthop. Res., 36, 22 (2018).

    PubMed  Google Scholar 

  6. L. J. Bessa, P. Fazii, M. Di Giulio, and L. Cellini, Int. Wound J., 12, 47 (2015).

    PubMed  Google Scholar 

  7. P. G. Bowler, B. I. Duerden, and D. G. Armstrong, Clin. Microbiol. Rev., 14, 244 (2001).

    PubMed  PubMed Central  CAS  Google Scholar 

  8. S. L. Percival, K. E. Hill, S. Malic, D. W. Thomas, and D. W. Williams, Wound Repair Regen., 19, 1 (2011).

    PubMed  Google Scholar 

  9. H. Schöfer, R. Bruns, I. Effendy, M. Hartmann, U. Jappe, A. Plettenberg, H. Reimann, H. Seifert, P. Shah, C. Sunderkötter, T. Weberschock, T. A. Wichelhaus, and A. Nast, J. Dtsch. Dermatol. Ges., 9, 953 (2011).

    PubMed  Google Scholar 

  10. K. S. Santos, A. M. Barbosa, L. P. da Costa, M. S. Pinheiro, M. B. Oliveira, F. Ferreira, and F. Padilha, Molecule., 21, 1 (2016).

    Google Scholar 

  11. B. A. Lipsky and C. Hoey, Clin. Inf. Dis., 49, 1541 (2009).

    Google Scholar 

  12. C. T. Spann, S. C. Taylor, and J. M. Weinberg, Clin. Dermatol., 21, 70 (2003).

    Google Scholar 

  13. P. Huira, J. K. Logan, S. Papadopoulos, and D. Whitney, Pharmacotherap., 32, 1006 (2012).

    Google Scholar 

  14. B. A. Lipsky, Diabetes Metab. Res. Rev., 32, 246 (2016).

    PubMed  Google Scholar 

  15. A. J. Alanis, Arch. Med. Res., 36, 697 (2005).

    PubMed  Google Scholar 

  16. G. Sussman, T. Swanson, J. Black, R. Cooper, G. Schultz, J. Fletcher, and D. Smith, Wounds Int., 5, 4 (2014).

    Google Scholar 

  17. J. B. Wright, K. Lam, and R. E. Burrell, Am. J. Infect. Control., 26, 572 (1998).

    PubMed  CAS  Google Scholar 

  18. T. Bjarnsholt, K. Kirketerp-Møller, P. Ø. Jensen, K. G. Madsen, R. Phipps, K. Krogfelt, N. H øiby, and M. Givskov, Wound Repair. Regen., 16, 2 (2008).

    PubMed  Google Scholar 

  19. C. Attinger and R. Wolcott, Adv. Wound Care (New Rochelle), 1, 127 (2012).

    Google Scholar 

  20. S. L. Percival, S. M. McCarty, and B. Lipsky, Adv. Wound Care (New Rochelle), 4, 373 (2015).

    Google Scholar 

  21. J. Fernebro, Drug Resist. Updat., 14, 125 (2011).

    PubMed  Google Scholar 

  22. M. Zucca and D. Savoia, Int. J. Biomed. Sci., 6, 77 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Y. H. Lin, J. H. Lin, S. H. Wang, T. H. Ko, and G. C. Tseng, J. Biomed. Mater. Res. Part., 100, 2288 (2012).

    Google Scholar 

  24. M. K. Rai, S. D. Deshmukh, A. P. Ingle, and A. K. Gade, J. Appl. Microbiol., 112, 841 (2012).

    PubMed  CAS  Google Scholar 

  25. R. Singh and D. Singh, J. Mater. Sci.-Mater. Med., 23, 2649 (2012).

    PubMed  CAS  Google Scholar 

  26. S. L. Percival, W. Slone, S. Linton, T. Okel, L. Corum, and J. G. Thomas, Int. Wound J., 8, 237 (2011).

    PubMed  Google Scholar 

  27. D. E. Marx and D. J. Barillo, Burn., 40, s9 (2014).

    Google Scholar 

  28. T. Maneerung, S. Tokura, and R. Rujiravanit, Carbohydr. Polym., 72, 43 (2008).

    CAS  Google Scholar 

  29. Z. Huang, P. Xu, G. Chen, G. Zeng, A. Chen, Z. Song, K. He, L. Yuan, H. Li, and L. Hu, Chemospher., 196, 575 (2018).

    CAS  Google Scholar 

  30. Z. Huang, Z. Zeng, A. Chen, G. Zeng, R. Xiao, P. Xu, K. He, Z. Song, L. Hu, M. Peng, T. Huang, and G. Chen, Chemospher., 203, 199 (2018).

    CAS  Google Scholar 

  31. Z. Huang, K. He, Z. Song, G. Zeng, A. Chen, L. Yuan, H. Li, L. Hu, Z. Guo, and G. Chen, Chemospher., 211, 573 (2018).

    CAS  Google Scholar 

  32. Z. Huang, G. Chen, G. Zeng, Z. Guo, K. He, L. Hu, J. Wu, L. Zhang, Y. Zhu, and Z. Song, J. Hazard. Mater., 321, 37 (2017).

    PubMed  CAS  Google Scholar 

  33. J. Kopecek and J. Yang, Polym. Int., 56, 1078 (2007).

    CAS  Google Scholar 

  34. J. M. Rosiak, J. Control. Release., 31, 9 (1994).

    CAS  Google Scholar 

  35. B. Balakrishnan, M. Mohanty, P. R. Umashankar, and A. Jayakrishnan, Biomaterial., 26, 6335 (2005).

    CAS  Google Scholar 

  36. S. O. Rogero, S. M. Malmonge, A. B. Lugao, T. I. Ikeda, L. Miyamaru, and A. S. Cruz, Artif. Organ., 27, 424 (2003).

    CAS  Google Scholar 

  37. C. J. De Groot, M. J. A. Van Luyn, W. N. E. Van Dijk-Wolthuis, J. A. Cadee, J. A. Planting, W. Den Otter, and W. E. Hennink, Biomaterial., 22, 1197 (2001).

    Google Scholar 

  38. E. Karadag, D. Saraydin, S. Cetinkaya, and O. Guven, Biomaterial., 17, 67 (1996).

    CAS  Google Scholar 

  39. L. Ionov, Adv. Funct. Mater., 23, 4555 (2013).

    CAS  Google Scholar 

  40. M. C. Koetting, J. T. Peters, S. D. Steichen, and N. A. Peppas, Mater. Sci. Eng. R. Rep., 93, 1 (2015).

    PubMed  PubMed Central  Google Scholar 

  41. N. Ninan, A. Forget, V. P. Shastri, N. H. Voelcker, and A. Blencowe, ACS Appl. Mater. Interface., 8, 28511 (2016).

    CAS  Google Scholar 

  42. T. R. Dargaville, B. L. Farrugia, J. A. Broadbent, S. Pace, Z. Upton, and N. H. Voelcker, Biosens. Bioelectron., 41, 30 (2013).

    PubMed  CAS  Google Scholar 

  43. E. M. Jones, C. A. Cochrane, and S. L. Percival, Adv. Wound Care (New Rochelle), 4, 431 (2015).

    Google Scholar 

  44. J. S. Vuković, M. M. Babić, K. M. Antić, J. M. Filipović, S. T. Stojanović, S. J. Najman, and S. Lj. Tomić, Mater. Chem. Phys., 175, 158 (2016).

    Google Scholar 

  45. J. S. Vuković, M. M. Babić, K. M. Antić, M. G. Miljković, A. A. Peric-Grujić, J. M. Filipović, and S. Lj. Tomić, Mater. Chem. Phys., 164, 51 (2015).

    Google Scholar 

  46. C. L. Bell and N. A. Peppas, J. Control. Releas., 37, 277 (1995).

    CAS  Google Scholar 

  47. P. L. Ritger and N. A. Peppas, J. Control. Releas., 5, 23 (1987).

    CAS  Google Scholar 

  48. A. R. Khare, N. A. Peppas, G. Massimo, and P. Colombo, J. Control. Releas., 22, 239 (1992).

    CAS  Google Scholar 

  49. H. J. Scott, Macromol. Sci. Phys. B, 31, 1 (1992).

    Google Scholar 

  50. Y. Yin, Y. Yang, and H. Xu, J. Pol. Sci. Part B Polym. Phys., 15, 3128 (2001).

    Google Scholar 

  51. N. A. Peppas and J. J. Sahlin, Int. J. Pharm., 57, 169 (1989).

    CAS  Google Scholar 

  52. K. Yamaoka, T. Nakagawa, and T. Uno, J. Pharmacokinet. Bioph., 6, 165 (1978).

    CAS  Google Scholar 

  53. T. Mosmann, J. Immunol. Method., 65, 55 (1983).

    CAS  Google Scholar 

  54. M. Ohno and T. Abe, J. Immunol. Method., 145, 199 (1991).

    CAS  Google Scholar 

  55. A. Dhawan, M. Bajpayee, and D. Parmar, Cell Biol. Toxicol., 25, 5 (2009).

    PubMed  CAS  Google Scholar 

  56. A. S. Jaran, Eur. Sci. J., 13, 1 (2017).

    Google Scholar 

  57. G. Kronvall, I. Karlsson, M. Walder, M. Sörberg, and L. E. Nilsson, J. Antimicrob. Chemoth., 57, 498 (2006).

    CAS  Google Scholar 

  58. Y. Xiang and D. Chen, Eur. Polym. J., 43, 4178 (2007).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simonida Lj. Tomić.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: This work has been supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant Nos. 172062 and 172026).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vuković, J.S., Perić-Grujić, A.A., Mitić-Ćulafić, D.S. et al. Antibacterial Activity of pH-Sensitive Silver(I)/Poly(2-hydroxyethyl acrylate/itaconic acid) Hydrogels. Macromol. Res. 28, 382–389 (2020). https://doi.org/10.1007/s13233-020-8050-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8050-z

Keywords

Navigation