Skip to main content
Log in

Solution-Processed Flexible Gas Barrier Films for Organic Field-Effect Transistors

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The solution-processed gas barrier film was fabricated and used for organic field-effect transistors (OFETs). Organic-inorganic hybrid sol-gel materials and cyclic transparent optical polymer (CYTOP) were used as the bottom and top layers of the barrier films, respectively, to effectively protect against gas permeation through the barrier films. The organic-inorganic hybrid material includes sol-gel precursors and amphiphilic polymers. The conventional sol-gel precursors form siloxane bonds by sol-gel reaction and form densely-packed rigid part in thin films. The alkoxysilane-functionalized amphiphilic polymer in the sol-gel precursor solutions has two hydrophobic segments and a hydrophilic segment. The amphiphilic polymer with reactive alkoxysilane groups at both ends of the hydrophobic segments can be involved in the sol-gel reaction, and they can act as surfactants to surround the conventional precursors stabilizing the nanoparticles formed by the hydrolytic condensation reaction of precursors. The amphiphilic polymer also provides flexibility for hybrid sol-gel thin films. CYTOP was used to introduce hydrophobicity on top of the organic-inorganic hybrid thin films. The barrier films containing the organic-inorganic hybrid and hydrophobic CYTOP layers were applied to OFETs and exhibited notable gas barrier properties, high transparency, and flexibility. The encapsulated OFETs with 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) as an organic semiconductor showed a slight decrease in hole mobility from 0.13 to 0.11 cm2 V-1 s-1, while the OFETs without barrier films showed a mobility decrease from 0.11 to 0.03 cm2 V-1 s-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Cheng, G. Li, X. Zhan, and Y. Yang, Nat. Photonics, 12, 131 (2018).

    CAS  Google Scholar 

  2. Y. Lee, J. Y. Oh, W. Xu, O. Kim, T. R. Kim, J. Kang, Y. Kim, D. Son, J. B.-H. Tok, M. J. Park, Z. Bao, and T.-W. Lee, Sci. Adv., 4, eaat7387 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. X. Guo, Y. Xu, S. Ogier, T. N. Ng, M. Caironi, A. Perinot, L. Li, J. Zhao, W. Tang, R. A. Sporea, A. Nejim, J. Carrabina, P. Cain, and F. Yan, IEEE Trans. Electron Devices, 64, 1906 (2017).

    CAS  Google Scholar 

  4. H. Jeon, S. Park, S. Nam, K. Shin, S.-R. Kim, S. H. Kim, J. Jang, and T. K. An, Chin. J. Chem., 34, 1103 (2016).

    CAS  Google Scholar 

  5. S. Park, W. M. Yun, L. H. Kim, S. Park, S. H. Kim, and C. E. Park, Org. Electron., 14, 3385 (2013).

    CAS  Google Scholar 

  6. T. F. O’Connor, A. V. Zaretski, S. Savagatrup, A. D. Printz, C. D. Wilkes, M. I. Diaz, E. J. Sawyer, and D. J. Lipomi, Sol. Energy Mater. Sol. Cells, 144, 438 (2016).

    Google Scholar 

  7. M. Giannouli, V.M. Drakonakis, A. Savva, P. Eleftheriou, G. Florides, and S. A. Choulis, Chem Phys Chem, 16, 1134 (2015).

    CAS  PubMed  Google Scholar 

  8. L. Wang, D. Yan, D. W. Shaffer, X. Ye, B. H. Layne, J. J. Concepcion, M. Liu, and C.-Y. Nam, Chem. Mater., 30, 324 (2018).

    CAS  Google Scholar 

  9. S. D. Ogier, H. Matsui, L. Feng, M. Simms, M. Mashayekhi, J. Carrabina, L. Terés, and S. Tokito, Org. Electron., 54, 40 (2018).

    CAS  Google Scholar 

  10. Z. Shu, F. Kemper, E. Beckert, R. Eberhardt, and A. Tünnermann, Mater. Today Proc., 4, 5039 (2017).

    Google Scholar 

  11. S. Garner, D. Chowdhury, and S. Lewis, Information Display, 35, 9 (2019).

    Google Scholar 

  12. H. Zhou, J.-H. Kim, K.-H. Kim, C.-S. Han, J.-C. Park, and J.-W. Park, J. Nanosci. Nanotechnol., 16, 11569 (2016).

    CAS  Google Scholar 

  13. D. Yu, Y.-Q. Yang, Z. Chen, Y. Tao, and Y.-F. Liu, Opt. Commun., 362, 43 (2016).

    CAS  Google Scholar 

  14. J. Wu, F. Fei, C. Wei, X. Chen, S. Nie, D. Zhang, W. Su, and Z. Cui, RSC Adv., 8, 5721 (2018).

    CAS  Google Scholar 

  15. J. H. Kwon, E. G. Jeong, Y. Jeon, D.-G. Kim, S. Lee, and K. C. Choi, ACS Appl. Mater. Interfaces, 11, 3251 (2019).

    CAS  PubMed  Google Scholar 

  16. J. H. Jang, N. Kim, X. Li, T. K. An, J. Kim, and S. H. Kim, Appl. Surf. Sci., 475, 926 (2019).

    CAS  Google Scholar 

  17. S. Park, Y. J. Jeong, Y. Baek, L. H. Kim, J. H. Jang, Y. Kim, T. K. An, S. Nam, S. H. Kim, J. Jang, and C. E. Park, Appl. Surf. Sci., 414, 262 (2017).

    CAS  Google Scholar 

  18. D. Álvarez, A. Collazo, and C. Pérez, Surf. Coat. Technol., 321, 108 (2017).

    Google Scholar 

  19. T. Shimizu, K. Kanamori, A. Maeno, H. Kaji, C. M. Doherty, and K. Nakanishi, Langmuir, 33, 4543 (2017).

    CAS  PubMed  Google Scholar 

  20. Y. Baek, X. Li, N. Kim, C. E. Park, T. K. An, J. Kim, and S. H. Kim, J. Mater. Chem. C, 7, 11612 (2019).

    CAS  Google Scholar 

  21. N. Kim, X. Li, S. H. Kim, and J. Kim, J. Ind. Eng. Chem., 68, 209 (2018).

    CAS  Google Scholar 

  22. P. Duan, C. Yan, W. Luo, and W. Zhou, Mater. Lett., 164, 172 (2016).

    CAS  Google Scholar 

  23. H. Chen, L. Kong, and Y. Wang, J. Membr. Sci., 487, 109 (2015).

    CAS  Google Scholar 

  24. S. Park, L. H. Kim, Y. J. Jeong, K. Kim, M. Park, Y. Baek, T. K. An, S. Nam, J. Jang, and C. E. Park, Org. Electron., 36, 133 (2016).

    CAS  Google Scholar 

  25. X. Li, K. Kim, H. Oh, H. C. Moon, S. Nam, and S. H. Kim, Org. Electron., 69, 190 (2019).

    CAS  Google Scholar 

  26. A. M. Seco, M. C. Gonçalves, and R. M. Almeida, Mater. Sci. Eng. B, 76, 193 (2000).

    Google Scholar 

  27. Y. Shen, T. Yamazaki, Z. Liu, D. Meng, T. Kikuta, and N. Nakatani, Thin Solid Films, 517, 2069 (2009).

    CAS  Google Scholar 

  28. S. Wang, L. Zhang, C. Long, and A. Li, J. Colloid Interface Sci., 428, 185 (2014).

    CAS  PubMed  Google Scholar 

  29. S. Park, S. Nam, L. Kim, M. Park, J. Kim, T. K. An, W. M. Yun, J. Jang, J. Hwang, and C. E. Park, Org. Electron., 13, 2786 (2012).

    CAS  Google Scholar 

  30. K. Tsukagoshi, J. Tanabe, I. Yagi, K. Shigeto, K. Yanagisawa, and Y. Aoyagi, J. Appl. Phys., 99, 064506 (2006).

    Google Scholar 

  31. M. Stewart, R. S. Howell, L. Pires, and M. K. Hatalis, IEEE Trans. Electron Devices, 48, 845 (2001).

    CAS  Google Scholar 

  32. C. Jonda, A. B. R. Mayer, U. Stolz, A. Elschner, and A. Karbach, J. Mater. Sci., 35, 5645 (2000).

    CAS  Google Scholar 

  33. S. E. Fritz, T. W. Kelley, and C. D. Frisbie, J. Phys. Chem. B, 109, 10574 (2005).

    CAS  PubMed  Google Scholar 

  34. C. S. Kim, S. J. Jo, S. W. Lee, W. J. Kim, H. K. Baik, S. J. Lee, D. K. Hwang, and S. Im, Semicond. Sci. Technol., 21, 1022 (2006).

    CAS  Google Scholar 

  35. A. G. Banpurkar, Y. Sawane, S. M. Wadhai, C. U. Murade, I. Siretanu, D. van den Ende, and F. Mugele, Faraday Discuss., 199, 29 (2017).

    CAS  PubMed  Google Scholar 

  36. J. M. Kim, J. Oh, K.-M. Jung, K. Park, J.-H. Jeon, and Y.-S. Kim, Semicond. Sci. Technol., 34, 075015 (2019).

    CAS  Google Scholar 

  37. M. Nitani, K. Nakayama, K. Maeda, M. Omori, and M. Uno, Org. Electron., 71, 164 (2019).

    CAS  Google Scholar 

  38. C. Yang, Y. J. Kim, H. S. Lee, S.-R. Kim, S. H. Kim, and T. K. An, Sci. Adv. Mater., 9, 2234 (2017).

    CAS  Google Scholar 

  39. V. Raghuwanshi, D. Bharti, I. Varun, A. K. Mahato, and S. P. Tiwari, Org. Electron., 34, 284 (2016).

    CAS  Google Scholar 

  40. V. Raghuwanshi, D. Bharti, A. K. Mahato, I. Varun, and S. P. Tiwari, Synth. Met., 236, 54 (2018).

    CAS  Google Scholar 

  41. R. P. Ortiz, A. Facchetti, and T. J. Marks, Chem. Rev., 110, 205 (2010).

    CAS  Google Scholar 

  42. K. Kim, S. Shin, S. H. Kim, J. Lee, and T. K. An, Appl. Surf. Sci., 479, 280 (2019).

    CAS  Google Scholar 

  43. S. Nam, H. Jeon, S. H. Kim, J. Jang, C. Yang, and C. E. Park, Org. Electron., 10, 67 (2009).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tae Kyu An, Juyoung Kim or Se Hyun Kim.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: This work was supported by the Materials & Components Technology Development Program (20006537, Development of High Performance Insulation Materials for Flexible OLED Display TFT) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea), and a grant from the Center for Advanced Soft Electronics (2012M3A6A5055225) under the Global Frontier Research Program of the Ministry of Education, Science, and Technology. This research was also supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (2019R1I1A3A01057281). This research was also supported by Yeungnam University Research Grants in 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, J., Kwon, Hj., Kim, N. et al. Solution-Processed Flexible Gas Barrier Films for Organic Field-Effect Transistors. Macromol. Res. 28, 782–788 (2020). https://doi.org/10.1007/s13233-020-8098-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8098-9

Keywords

Navigation