Skip to main content
Log in

THz Spectroscopy of Bound Water in Glucose: Direct Measurements from Crystalline to Dissolved State

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

The main reason for the alternation of terahertz (THz) response in biological samples is the transition of a part of water from its free to bound state and back. To analyze such results, a precise spectrum of bound water within THz range should be known. The suggested wet powder spectroscopy method is optimal for this task. We measured the THz transmission of dry glucose pressed into pellets. Then, we added a small amount of water to these pellets and again measured the THz spectra. The contribution from the free water state starts to appear in resulting THz spectra after water concentration in glucose samples reaches 14–16%. Just below is the optimal point to extract the spectral contribution from bound water. We extracted the absorption and refraction spectra of bound water and confirmed that they are an order of magnitude weaker than those of free water within 0.07–1-THz range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O. Smolyanskaya, N. Chernomyrdin, A. Konovko, K. Zaytsev, I. Ozheredov, O. Cherkasova, M. Nazarov, J.-P. Guillet, S. Kozlov, Y. Kistenev, J.-L. Coutaz, P. Mounaix, V. Vaks, J.-H. Son, H. Cheon, V. Wallace, Y. Feldman, I. Popov, A. Yaroslavsky, A. Shkurinov, V. Tuchin, Progress in Quantum Electronics, 62, 1 (2018) doi:https://doi.org/10.1016/j.pquantelec.2018.10.001

    Article  Google Scholar 

  2. A.A. Gavdush, N.V. Chernomyrdin, K.M. Malakhov, S.-I.T. Beshplav, I.N. Dolganova, A.V. Kosyrkova, P.V. Nikitin, G.R. Musina, G.M. Katyba, I.V. Reshetov, O.P. Cherkasova, G.A. Komandin, V.E. Karasik, A.A. Potapov, V.V. Tuchin, K.I. Zaytsev, Journal of Biomedical Optics, 24(2), 027001 (2019) doi: https://doi.org/10.1117/1.JBO.24.2.027001

    Article  Google Scholar 

  3. N. Nandi, K. Bhattacharyya, B. Bagchi, Chem. Rev., 100 (6), 2013 (2000) doi: https://doi.org/10.1021/cr980127v2000

    Article  Google Scholar 

  4. L. Comez, M. Paolantoni, P. Sassi, S. Corezzi, A. Morresi, D. Fioretto, Soft Matter 12 (25), 5501 (2016)

    Article  Google Scholar 

  5. A. Charkhesht, C. K. Regmi, K. R. Mitchell-Koch, S. Cheng, N.Q. Vinh, J. Phys. Chem. B., 122 (24), 6341 (2018) doi:https://doi.org/10.1021/acs.jpcb.8b02872

    Article  Google Scholar 

  6. M. M. Nazarov, O. P. Cherkasova, A. P. Shkurinov, Quantum Electronics, 46(6), 488 (2016)

    Article  Google Scholar 

  7. B. Born, M. Havenith, J. Infrared Milli Terahz Waves, 30, 1245 (2009) doi: https://doi.org/10.1007/s10762-009-9514-6

    Article  Google Scholar 

  8. O. P. Cherkasova, M. M. Nazarov, A. A. Angeluts, A. P. Shkurinov, Optics and Spectroscopy, 120 (1), 50 (2016)

    Article  Google Scholar 

  9. M. M. Nazarov, O. P. Cherkasova, E. N. Lazareva, A. B. Bucharskaya, N. A. Navolokin, V.V. Tuchin, A. P. Shkurinov, Optics and spectroscopy, 126(6), 721 (2019)

    Article  Google Scholar 

  10. K.I. Zaytsev, A.A. Gavdush, N.V. Chernomyrdin, S.O. Yurchenko, IEEE Transactions on Terahertz Science & Technology, 5(5), 817 (2015) doi: https://doi.org/10.1109/TTHZ.2015.2460677

    Article  Google Scholar 

  11. K.I. Zaytsev, K.G. Kudrin, V.E. Karasik, I.V. Reshetov, S.O. Yurchenko, Appl. Phys. Lett., 106(5), 053702 (2015), DOI: https://doi.org/10.1063/1.4907350

    Article  Google Scholar 

  12. U. Heugen, G. Schwaab, E. Bründermann, M. Heyden, X. Yu, D. Leitner, M. Havenith, Proc. Natl. Acad. Sci. USA, 103(33), 12301 (2006)

    Article  Google Scholar 

  13. M. M. Nazarov, O. P. Cherkasova, A. P. Shkurinov, J Infrared Mill.Terah.Waves, 39, 840 (2018)

    Article  Google Scholar 

  14. M. Nazarov, A. Shkurinov, V. V. Tuchin, X. C. Zhang (2010). Terahertz tissue spectroscopy and imaging. Handbook of photonics for biomedical science.

  15. Y. Xu, M. Havenith, J. Chem. Phys. 143 (17), 170901 (2015)

    Article  Google Scholar 

  16. K. Shiraga, T. Suzuki, N. Kondo, J. De Baerdemaeker, Y. Ogawa, Carbohydr. Res., 406, 46 (2015)

    Article  Google Scholar 

  17. Dielectric Relaxation in Biological Systems: Physical Principles, Methods, and Applications. Ed. by V. Raicu, Y. Feldman (Oxford: Oxford University Press, 2015)

  18. A. Y. Zasetsky, Phys. Rev. Lett. 107, 117601 (2011)

    Article  Google Scholar 

  19. I. Popov, P. B. Ishai, A. Khamzin, Y. Feldman, Phys. Chem. Chem. Phys. 18, 13941 (2016)

    Article  Google Scholar 

  20. H. Yada, M. Nagai, K. Tanaka, Chem. Phys. Lett. 464, 166 (2008)

    Article  Google Scholar 

  21. K. I. Zaytsev, N.V Chernomyrdin, G.M. Katyba, I.N. Dolganova, O.P. Cherkasova, G.A. Komandin, V.N. Kurlov, D.S. Ponomarev, M.A. Skorobogatiy, I.V. Reshetov and V.V. Tuchin, J. Opt., 22, 013001 (2020) doi: https://doi.org/10.1088/2040-8986/ab4dc3

    Article  Google Scholar 

  22. O. Cherkasova, M. Nazarov, A. Shkurinov, Journal of Physics: Conf. Series, 793, 012005 (2017) doi:https://doi.org/10.1088/1742-6596/793/1/012005

    Article  Google Scholar 

  23. K. Shiraga, A. Adachi, M. Nakamura, T. Tajima, K. Ajito, Y. Ogawa, J. Chem. Phys., 146 (10), 105102 (2017)

    Article  Google Scholar 

  24. A. A. Angeluts, A. V. Balakin, M. G. Evdokimov, M. N. Esaulkov, M. M. Nazarov, I. A. Ozheredov, D. A. Sapozhnikov, P. M. Solyankin, O. P.Cherkasova, A. P. Shkurinov, Quantum Electronics, 44(7), 614 (2014)

    Article  Google Scholar 

  25. M. M. Nazarov, A. P. Shkurinov, E. A. Kuleshov, V. V. Tuchin V.V. Quantum Electron, 38, 647 (2008)

  26. B. M. Fischer, M. Walther, P. U. Jepsen, Phys. Med. Biol. 47, 3807 (2002)

    Article  Google Scholar 

  27. E. R. Brown, J. E. Bjarnason, A. M. Fedor, T. M. Korter, Applied Physics Letters, 90, 061908 (2007). doi: https://doi.org/10.1063/1.2437107

    Article  Google Scholar 

  28. M. Nagai, H. Yada, T. Arikawa, K. Tanaka, J Infrared Mill.Terah.Waves, 27(4), 505 (2006) https://doi.org/10.1007/s10762-006-9098-3

    Article  Google Scholar 

  29. H. Looyenga, Physica 31(3), 401 (1965) doi:https://doi.org/10.1016/0031-8914(65)90045-5

    Article  Google Scholar 

  30. C. Joerdens, M. Scheller, B. Breitenstein, D. Selmar, M. Koch, J Biol Phys., 35(3), 255 (2009). doi: https://doi.org/10.1007/s10867-009-9161-0

    Article  Google Scholar 

  31. M. Borovkova, M. Khodzitsky, P. Demchenko, O. Cherkasova, A. Popov, I. Meglinski, Biomedical Optics Express, 9(5) 2266 (2018) https://doi.org/10.1364/BOE.9.002266

    Article  Google Scholar 

  32. A. Mostad, Acta Chem. Scand, 48, 276 (1994)

    Article  Google Scholar 

  33. M. Takahashi, Y. Ishikawa, Chemical Physics Letters, 642, 29 (2015)

    Article  Google Scholar 

  34. G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press,Oxford, 1997

    Google Scholar 

  35. M. Walther, B. M. Fischer, P. U. Jepsen, Chemical Physics, 288, 261 (2003)

    Article  Google Scholar 

  36. H.-B. Liu, X.-C. Zhang, Chem. Phys. Lett., 429(1), 229 (2006)

    Article  Google Scholar 

  37. H-B. Liu, Y. Chen, X.-C. Zhang, 96, 927 (2007)

  38. E. Hough, S. Neidle, D. Rogers, P. G. H. Troughton, Acta Cryst., B29, 365 (1973)

    Article  Google Scholar 

  39. C. Chen, W. Z. Li, Y. C. Song, L. D. Weng, N. Zhang, Computational and Theoretical Chemistry, 984, 85 (2012)

    Article  Google Scholar 

  40. D. Laage, T. Elsaesser, J. T. Hynes, Chem. Rev. 117, 10694 (2017)

    Article  Google Scholar 

  41. W.-G. Yeo. Terahertz Spectroscopic Characterization and Imaging for Biomedical Applications, Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University (2015)

Download references

Funding

This work has been partly supported by the Russian Foundation for Basic Research (project no.17-00-00275 (17-00-00270) and 18-52-00040 (in data processing part)) by the Ministry of Science within the State assignment FSRC “Crystallography and Photonics” RAS in part of equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Cherkasova.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherkasova, O.P., Nazarov, M.M., Konnikova, M. et al. THz Spectroscopy of Bound Water in Glucose: Direct Measurements from Crystalline to Dissolved State. J Infrared Milli Terahz Waves 41, 1057–1068 (2020). https://doi.org/10.1007/s10762-020-00684-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-020-00684-4

Keywords

Navigation