Skip to main content
Log in

Sensitive Terahertz Free Space Modulator Using CsPbBr3 Perovskite Quantum Dots–Embedded Metamaterial

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We have demonstrated a method for active modulating terahertz wave using CsPbBr3 perovskite quantum dots (QDs)–embedded double-C metallic metamaterial unit cells. The resonance response frequency of the proposed CsPbBr3 perovskite QDs-embedded metamaterial can be tuned by varying the external applied photoexcitation intensity. By doing so, we measured the dynamic terahertz wave transmission modulation and demonstrate tuning of the terahertz wave resonant response based on the optical pump fluences. The modulation speed and depth of the modulator are 5 MHz and 88.3%, respectively. Our results indicate the importance of manipulating the terahertz wave for future wireless communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7

Similar content being viewed by others

References

  1. M. Rahm, J. S. Li, and W. J. Padilla, “THz wave modulators: A brief review on different modulation techniques,” J. Infrared. Millim. Te.34(1), 1–27 (2013)

    Article  Google Scholar 

  2. M. Hochberg, T. Baehrjones, G. Wang, M. Shearn, K. Harvard, and J. Luo, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006)

    Article  Google Scholar 

  3. H. K. Yoo, C. Kang, Y. Yoon, H. Lee, and J. W. Lee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett. 99, 061108 (2011)

    Article  Google Scholar 

  4. K. S. Lee, R. Kang, B. Son, D. Y. Kim, N. EiYu, and D.K. Ko, “All-optical THz wave switching based on CH3NH3PbI3 perovskites,” Sci. Rep. 6, 37912 (2016)

    Article  Google Scholar 

  5. M. Mittendorff, S. S. Li, and T. E. Murphy, “Graphene-based waveguide-integrated terahertz modulator.” Acs Photonics4(2), 316–321 (2017)

    Article  Google Scholar 

  6. J. Wang, H. Tian, Y. Wang, X.Y. Li, Y. J. Cao, L. Li, J. L. Liu, and Z. X. Zhou, “Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial,” Opt. Express 26(5), 5769–5776 (2018)

    Article  Google Scholar 

  7. L. Gyuseok, I. Maeng, C. Kang, and M. Oh, “High-efficiency optical terahertz modulation of aligned Ag nanowires on a Si substrate,” Appl. Phys. Lett. 112, 111101(2018)

    Article  Google Scholar 

  8. G. Z. Liang, X. N. Hu, X. C. Yu, Y. D. Shen, L. H. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, and Q. J. Wang, “Integrated terahertz graphene modulator with 100% modulation depth,” Acs Photonics2(11), 1559–1566 (2015)

    Article  Google Scholar 

  9. Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4, 7409 (2014)

    Article  Google Scholar 

  10. G. C. Zhou, P. H. Dai, J. B. Wu, B. B. Jin, Q. Y. Wen, G. H. Zhu, Z. Shen, C. H. Zhang, L. Kang, W. W. Xu, J. Chen, and P. H. Wu, “Broadband and high modulation-depth THz modulator using low bias controlled VO2-integrated metasurface,” Opt. Express25(15), 17322–17328 (2017)

    Article  Google Scholar 

  11. X. B. Wang, L. Cheng, Y. Wu, D. P. Zhu, L. Wang, J. X. Zhu, H. Yang, and E. E. M. Chia, “Topological-insulator-based terahertz modulator,” Sci. Rep. 7(1), 13486 (2017)

    Article  Google Scholar 

  12. Z. Q. Liu, S. J. Chang, X. L. Wang, F. Fan, and W. Li, “Thermally controlled terahertz metamaterial modulator based on phase transition of VO2 thin film,” Acta. Phys. Sin-Ch. Ed. 62(13), 537–544 (2013)

    Google Scholar 

  13. Y. Zhao, J. H. Lee, Y. H. Zhu, M. Nazari, C. H. Chen, H. Y. Wang, A. Bernussi, M. Holtz, and Z. Y. Fan, “Structural, electrical, and terahertz transmission properties of VO2 thin films grown on c-, r-, and m-plane sapphire substrates,” J. Appl. Phys. 111(5), 1039 (2012)

    Google Scholar 

  14. F. R. Hu, Q. Rong, Y. Zhou, T. Li, W. T. Zhang, S. Yin, Y.Z. Chen, J. G. Han, G. B. Jiang, P. D. Zhu, and Y. Chen, “Terahertz intensity modulator based on low current controlled vanadium dioxide composite metamaterial,” Opt. Commun. 23877(2019)

  15. L. Fekete, F. Kadlec, and P. Kužel, and H. Němec, “Ultrafast opto-terahertz photonic crystal modulator, ” Opt. Lett. 32(6), 680–682 (2007)

    Article  Google Scholar 

  16. J. Li, J. He, and Z. Hong, “Terahertz wave switch based on silicon photonic crystals, ” Appl. Opt. 46(22), 5034–5037 (2007)

    Article  Google Scholar 

  17. G. R. Yettapu, D. Talukdar , S. Sarkar, A. Swarnkar, A. Nag, and P. Ghosh, “THz conductivity within colloidal CsPbBr3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths,” Nano Lett. 16(8), 4838 (2016).

    Article  Google Scholar 

  18. A. Chanana, X. J. Liu, C. Zhang, Z. V. Vardeny, and A. Nahata, “Ultrafast frequency-agile terahertz devices using methylammonium lead halide perovskites,” Sci. Adv. 4(5),7353(2018).

    Article  Google Scholar 

  19. O. Sydoruk, E. Tatartschuk, E. Shamonina, and L. Solymar, “Analytical formulation for the resonant frequency of split rings, ” J. Appl. Phys. 105(1), 014903(2009)

    Article  Google Scholar 

  20. J. F. Wang, S.B. Qu, Z. Xu, H. Ma, Y. M. Yang, and C. GU, “A controllable magnetic metamaterial: split-ring resonator with rotated inner ring, ” IEEE T. Antenn. Propag.56(7), 2018–2022 (2008)

    Article  Google Scholar 

  21. H. L. Huang, H. Xia, W. K. Xie, Z. B. Guo, H. J. Li, and D. Xie, “Design o f broadband grapheme-metamaterial absorbers for permittivity sensing at mid-infrared regions,” Sci. Rep. 8(1), 4183 (2018)

    Article  Google Scholar 

  22. D. R. Smith, D. C. Vier, T. K. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E. 71(3), 036617 (2005)

  23. L. Y. Xiong, B. Zhang, H. Y. Ji, W. Wang, X. Liu, S. L. He, J. L. Shen, “Active optically-controlled broadband terahertz modulator based on Fe3O4 nanoparticles,” IEEE T. THz Sci. Tech. 1-1 (2018).

  24. S.-F. Shi, B. Zeng, H.-L. Han, X. Hong, H.-Z. Tsai, H. Jung, A. Zettl, M. Crommie, F. Wang, “Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures,” Nano Lett. 15, 372 (2015).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. D. Yan for his interesting discussions and his support during the work, and the anonymous reviewers for their very valuable comments.

Funding

This research was partially supported by the National Natural Science Foundation of China (Grant Nos. 61871355, 61831012) and National Quality Infrastructure Program of China (2016YFF0200306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Jiu-Sheng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kai-Hong, W., Jiu-Sheng, L. & Jian-Quan, Y. Sensitive Terahertz Free Space Modulator Using CsPbBr3 Perovskite Quantum Dots–Embedded Metamaterial. J Infrared Milli Terahz Waves 41, 557–567 (2020). https://doi.org/10.1007/s10762-020-00680-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-020-00680-8

Keywords

Navigation