Skip to main content

Advertisement

Log in

Palaeoenvironments and taphonomy of clypeasteroids in Miocene carbonates of the Esfahan–Sirjan Basin, central Iran

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

A comprehensive study of the palaeoenvironmental and post-mortem conditions of Cenozoic clypeasteroids from the Miocene (Aquitanian) of the Qom Formation in the Esfahan–Sirjan Basin (central Iran) is based on test morphology, taphonomy, test surface preservation, echinoid abundance and echinoid sedimentary fabrics (density, orientation, and cluster), and facies analysis. The deposit-feeding clypeasteroids lived in deeper open-marine, shallow open-marine and shoal settings in a sublittoral environment. The low–moderate energy, deeper open-marine facies contain the lowest population of clypeasteroids, including rare shallow infaunal Parascutella and rare semi-infaunal Clypeaster. The moderate to high energy shallow open-marine facies contains the highest abundance and diversity of Clypeaster. The shallow open-marine and high-energy shoal facies are dominated by epibenthic Clypeaster individuals with robust, inflated and commonly dome-shaped tests. Differences in the abundance and diversity of the living clypeasteroids were related to water depth, food sources and energy levels. Different food sources, life-styles and burrowing depths are indicated by the particular morphologies of the echinoids. Dead echinoids, especially the robust and inflated Clypeaster individuals, were used as substrates and domiciles by skeletozoans and other epibiontic organisms. Disarticulation, fragmentation, bioerosion, test outline distortion and radial cracking affected the preservation of the dead clypeasteroid tests. The clypeasteroid shells in the deposits accumulated as 1—an almost autochthonous assemblage (Parascutella), 2—a moderately transported and reworked assemblage (Clypeaster and Parascutella) and 3—transported and multiple reworked assemblages (Clypeaster) affected by storms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adams T, Bourgeois F (1967) Asmari biostratigraphy. Iranian oil operating companies, geological and exploration division, report 1074

  • Adams CG, Gentry AW, Whybrow PJ (1983) Dating the terminal Tethyan event. Utrecht Micropaleontol Bull 30:273–298

    Google Scholar 

  • Aghanabati SA (2004) Geology of Iran. Geological Survey of Iran, Tehran (In Farsi)

    Google Scholar 

  • Amirshahkarami M, Karavan M (2015) Microfacies models and sequence stratigraphic architecture of the Oligocene-Miocene Qom Formation, south of Qom City, Iran. Geosci Front 6:593–604

    Google Scholar 

  • Amirshahkarami M, Naimi M (2016) Paleoecology and biostratigraphic data of the large benthic foraminifera in the Oligocene-Miocene Qom Formation in Kahak area, in the Urumieh-Dokhtar province in Iran. J Stratigr Sedimentol Res (JSSR) 32(2):91–108 (in Farsi, abstract in English)

    Google Scholar 

  • Amirshahkarami M, Vaziri-Moghaddam H, Taheri A (2007) Sedimentary facies and sequence stratigraphy of the Asmari Formation at Chaman-Bolbol, Zagros Basin, Iran. J Asian Earth Sci 29:947–959

    Google Scholar 

  • Asis J, Jasin B (2015) Miocene larger benthic foraminifera from the Kalumpang Formation in Tawau, Sabah. Sains Malays 44(10):1397–1405

    Google Scholar 

  • Asis J, Tahi SHJ, Jasin B, Musta B (2018a) Lower Miocene, larger benthic foraminifera fauna and depositional environment of limestone facies from Batu Luang, Klias Peninsula, Sabah. Bull Geol Soc Malay 65:125–130

    Google Scholar 

  • Asis J, Tahi SHJ, Jasin B, Abdullah N, Musta B (2018b) Larger benthic foraminifera occurrence from early Miocene limestone of Setap Shale formation at Batu Luang, Klias Peninsula, Sabah, Malaysia. Int Res J Earth Sci (IRJES) 6(10):12–19

    Google Scholar 

  • Bassi D, Hottinger L, Nebelsick JH (2007) Larger foraminifera from the Upper Oligocene of the Venetian area, northeast Italy. Palaeontology 50:845–868

    Google Scholar 

  • Beavington-Penney SJ, Racey A (2004) Ecology of extant nummulitids and other larger benthic foraminifera: applications in palaeoenvironmental analysis. Earth-Sci Rev 67:219–265

    Google Scholar 

  • Belaústegui Z, Nebelsick JH, De Gibert JM, Domènech R, Martinell J (2012) A taphonomic approach to the genetic interpretation of clypeasteroid accumulations from the Miocene of Tarragona, NE Spain. Lethaia 45(4):548–565

    Google Scholar 

  • Belaústegui Z, Gibert JMDE, Nebelsick JH, Domènech R, Martinell J (2013) Clypeasteroid tests as a benthic island for gastrochaenid bivalve colonization: evidence from the middle Miocene of Tarrragona (NE Spain). Palaeontology 56:783–796

    Google Scholar 

  • Belaústegui Z, Muñiz F, Nebelsick JH, Domènech R, Martinell J (2017) Echinoderm ichnology: bioturbation, bioerosion and related processes. J Paleontol 91(4):643–661

    Google Scholar 

  • Boggild GR, Rose EPF (1984) Mid-Tertiary echinoid biofacies as palaeoenvironmental indices. Ann Géol Pays Hellén 32:57–67

    Google Scholar 

  • Borszcz T (2012) Echinoids as substrates for encrustation: review and quantitative analysis. Ann Soc Geol Pol 82:139–149

    Google Scholar 

  • Borszcz T, Kuklinski P, Zatoń M (2013) Encrustation patterns on Late Cretaceous (Turonian) echinoids from southern Poland. Facies 59:299–318

    Google Scholar 

  • Boudagher-Fadel MK (2008) Evolution and geological significance of larger benthic foraminifera. Elsevier, Amsterdam

    Google Scholar 

  • Carter BD (2003) Diversity patterns in Eocene to Oligocene Echinoids. In: Prothero DR, Ivany LC, Nesbitt EA (eds) From greenhouse to icehouse—the marine Eocene-Oligocene Transition. Columbia University Press, New York, pp 354–365

    Google Scholar 

  • Casoli E, Ricci S, Antonelli F, Sacco Perasso C, Belluscio A, Ardizzone G (2016) Impact and colonization dynamics of the bivalve Rocellaria dubia on limestone experimental panels in the submerged Roman city of Baiae (Naples, Italy). Int Biodeterior Biodegrad 108:9–15

    Google Scholar 

  • Cordeiro CAMM, Harborne AR, Ferreira CEL (2014) Patterns of distribution and composition of sea urchin assemblages on Brazilian subtropical rocky reefs. Mar Biol 161:2221–2232

    Google Scholar 

  • Daneshian J, Ramezani Dana L (2007) Early Miocene benthic foraminifera and biostratigraphy of the Qom Formation, Deh Namak, central Iran. J Asian Earth Sci 29:844–858

    Google Scholar 

  • Daneshian J, Ramezani Dana L (2018) Foraminiferal biostratigraphy of the Miocene Qom Formation, northwest of the Qom, Central Iran. Front Earth Sci 12:237–251

    Google Scholar 

  • Desjardins PR, Mángano MG, Buatois LA, Pratt BR (2010) Skolithos pipe rock and associated ichnofabrics from the southern Rocky Mountains, Canada: colonization trends and environmental controls in an early Cambrian sand-sheet complex. Lethaia 43:507–528

    Google Scholar 

  • Doyle P (1996) Understanding fossils: an introduction to invertebrate palaeontology. Wiley, Chichester, p xi + 409

    Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional textures In: Ham WE (ed) Classification of carbonate rocks, vol 1. AAPG Memoir, pp 108–121

  • Ellers O, Telford M (1984) Collection of food by oral surface podia in the sand dollar, Echinarachnius parma (Lamarck). Biol Bull 166:574–582

    Google Scholar 

  • Ernst G, Hähnel W, Seibertz E (1973) Aktuopaläontologie und Merkmalsvariabilität bei mediterranen Echiniden und Rückschlüsse auf die Ökologie und Artumgrenzung fossiler Formen. Paläontol Z 47:188–216

    Google Scholar 

  • Flügel E (2010) Microfacies of carbonate rocks, analysis interpretation and application. Springer, Heidelberg

    Google Scholar 

  • Geel T (2000) Recognition of stratigraphic sequences in carbonate platform and slope deposits: empirical models based on microfacies analysis of paleogene deposits in southeastern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 155:211–238

    Google Scholar 

  • Gholamalian H, Fanati-Rashidi R, Sajadi SH (2016) Miocene (Mishan Formation) Echinoidea from Gohreh section, North of Bandar Abbas, Hormozgan province. Sci Q J Geosci 25(98):73–82 (in Farsi, abstract in English)

    Google Scholar 

  • Grun TB (2017) Recognizing traces of Snail predation on the Caribbean sand dollar Leodia Sexiesperforata. Palaios 32:448–461

    Google Scholar 

  • Grun TB, Nebelsick JH (2016) Taphonomy of a clypeasteroid echinoid using a new quasimetric approach. Acta Palaeontol Pol 61(3):689–699

    Google Scholar 

  • Grun TB, Mancosu A, Belaústegui Z, Nebelsick JH (2018) The taphonomy of Clypeaster: a paleontological tool to identify stable structures in natural shell systems. N Jahrb Geol Paläont Abh 289:189–202

    Google Scholar 

  • Guidetti P, Mori M (2005) Morpho-functional defences of Mediterranean sea urchins, Paracentrotus lividus and Arbacia lixula, against fish predators. Mar Biol 147:797–802

    Google Scholar 

  • Hakimzadeh S, Seyrafian A (2008) Late oligocene-early miocene benthic foraminifera and biostratigraphy of the Asmari Formation south Yasuj, north-central Zagros basin, Iran. Carbonate Evaporite 23:1–10

    Google Scholar 

  • Hallock P (1985) Why are larger foraminifera large? Paleobiology 11:195–208

    Google Scholar 

  • Hallock P, Glenn EC (1986) Larger foraminifera: a tool for paleoenvironmental analysis of cenozoic carbonates depositional facies. Palaios 1:55–64

    Google Scholar 

  • Hendler G, Miller JE, Pawson DL, Kier PM (1995) Sea stars, sea urchins, and allies: echinoderms of Florida and the Caribbean. Smithsonian Institution Press, Washington DC

    Google Scholar 

  • Hottinger L (1980) Répartition comparée des grands foraminifères de la mer Rouge et de l’Océan Indien. Ann Univ Ferrara 6:35–51

    Google Scholar 

  • Hottinger L (1983) Processes determining the distribution of larger foraminifera in space and time. Utrecht Micropaleontol Bull 30:239–254

    Google Scholar 

  • Khaksar K, Moghadam MI (2007) Paleontological study of the echinoderms in the Qom Formation (Central Iran). Earth Sci Res J 11:57–79

    Google Scholar 

  • Kidwell SM, Holland SM (1991) Field description of coarse bioclastic fabric. Palaios 6:426–434

    Google Scholar 

  • Kidwell SM, Fürsich FT, Aigner T (1986) Conceptual framework for analysis of fossil concentrations. Palaios 1:228–238

    Google Scholar 

  • Kier PM (1975) The echinoids of Carrie Bow Cay, Belize. Smiths Contrib Zool 206:1–45

    Google Scholar 

  • Kier PM, Grant RE (1965) Echinoid distribution and habits, Key Largo Coral Reef Preserve, Florida. Smiths Misc Collns 149:1–68

    Google Scholar 

  • Kroh A (2005) Catalogus Fossilium Austriae, 2. Echinoidea neogenica, 210 pp.Österreichische Akademie derWissenschaften, Wien

  • Kroh A, Harzhauser M (1999) An echinoderm fauna from the Lower Miocene of Austria: paleoecology and implications for Central Paratethys paleobiogeography. Ann Naturhist Mus Wien 101A:145–191

    Google Scholar 

  • Kroh A, Nebelsick JH (2003) Echinoid assemblages as a tool for palaeoenvironmental reconstruction—an example from the Early Miocene of Egypt. Palaeogeogr Palaeoclimatol Palaeoecol 201:157–177

    Google Scholar 

  • Kroh A, Nebelsick JH (2010) Echinoderms and Oligo-Miocene Carbonate Systems: potential applications in sedimentology and environmental reconstruction. Int Assoc Sedimentol Spec Publ 42:201–228

    Google Scholar 

  • Kroh A, Gholamalian H, Mandic O, Ćorić S, Harzhauser M, Reuter M, Piller WE (2011) Echinoids and pectinid bivalves from the early Miocene Mishan Formation of Iran. Acta Geol Pol 4:419–439

    Google Scholar 

  • Labbé-Bellas R, Cordeiro CAMM, Floeter SR, Segal B (2016) Sea urchin abundance and habitat relationships in different Brazilian reef types. Reg Stud Mar Sci 8:33–40

    Google Scholar 

  • Lopes RP (2011) Fossil sand dollars (Echinoidea: Clypeasteroida) from the southern Brazilian coast. Rev Bras Paleontolog 14(3):201–214

    Google Scholar 

  • Mancosu A, Nebelsick JH (2013) Multiple routes to mass accumulations of clypeasteroid echinoids: a comparative analysis of Miocene echinoid beds of Sardinia. Palaeogeogr Palaeoclimatol Palaeoecol 374:173–186

    Google Scholar 

  • Mancosu A, Nebelsick JH (2015) The Origin and Paleoecology of Clypeasteroid Assemblages from different Shelf settings of the Miocene of Sardinia, Italy. Palaios 30:373–387

    Google Scholar 

  • Mancosu A, Nebelsick JH (2016) Echinoid assemblages from the early Miocene of Funtanazza (Sardinia): a tool for reconstructing depositional environments along a shelf gradient. Palaeogeogr Palaeoclimatol Palaeoecol 454:139–160

    Google Scholar 

  • Mancosu A, Nebelsick JH (2017) Ecomorphological and taphonomic gradients in clypeasteroid-dominated echinoid assemblages along a mixed siliciclastic-carbonate shelf from the early Miocene of northern Sardinia, Italy. Acta Palaeontol Pol 62(3):627–646

    Google Scholar 

  • Mancosu A, Nebelsick JH (2019) Paleoecology of sublittoral Miocene echinoids from Sardinia: a case study for substrate controls of faunal distributions. J Paleontol 93(4):764–784

    Google Scholar 

  • Mancosu A, Nebelsick JH, Kroh A, Pillola GL (2015) The origin of echinoid shell beds in siliciclastic shelf environments: three examples from the Miocene of Sardinia, Italy. Lethaia 48:83–99

    Google Scholar 

  • McClanahan TR (1998) Predation and the distribution and abundance of tropical sea urchin populations. J Exp Mar Biol Ecol 221:231–255

    Google Scholar 

  • Mohammadi E, Ameri H (2015) Biotic components and biostratigraphy of the Qom Formation in northern Abadeh, Sanandaj-Sirjan fore-arc basin, Iran (northeastern margin of the Tethyan Seaway). Arab J Geosci 8(12):10789–10802

    Google Scholar 

  • Mohammadi E, Hasanzadeh-Dastgerdi M, Ghaedi M, Dehghan R, Safari A, Vaziri-Moghaddam H, Baizidi C, Vaziri M, Sfidari E (2013) The Tethyan seaway Iranian plate Oligo-Miocene deposits (the Qom Formation): distribution of Rupelian (Early Oligocene) and evaporate deposits as evidences for timing and trending of opening and closure of the Tethyan seaway. Carbonate & Evaporites 28:321–345

    Google Scholar 

  • Mohammadi E, Vaziri MR, Dastanpour M (2015) Biostratigraphy of the Nummulitids and Lepidocyclinids bearing Qom Formation based on larger Benthic Foraminifera (Sanandaj–Sirjan forearc basin and Central Iran back-arc basin, Iran). Arab J Geosci 8:403–423

    Google Scholar 

  • Mohammadi E, Hasanzadeh-Dastgerdi M, Safari A, Vaziri-Moghaddam H (2019) Microfacies and depositional environments of the Qom Formation in Barzok area, SW Kashan, Iran. Carbonate Evaporite 34:1293–1306

    Google Scholar 

  • Moradi S (2012) Study of Microfacies, depositional environment and diagenesis of the Qom Formation in Abgarm anticline, SE Chahriseh, NE Isfahan. Dissertation, University of Isfahan

  • Nebelsick JH (1992a) Echinoid distribution by fragment identification in the Northern Bay of Safaga, Red Sea, Egypt. Palaios 7:316–328

    Google Scholar 

  • Nebelsick JH (1992b) The Northern Bay of Safaga (Red Sea, Egypt): an actuopalaeontological approach. III Distribution of echinoids. Beitr Paläontol Österr 17:5–79

    Google Scholar 

  • Nebelsick JH (1999a) Taphonomy of Clypeaster fragments: preservation and taphofacies. Lethaia 32:241–252

    Google Scholar 

  • Nebelsick JH (1999b) Taphonomic comparison between Recent and fossil sand dollars. Palaeogeogr Palaeoclimatol Palaeoecol 149:349–358

    Google Scholar 

  • Nebelsick JH (2008) Taphonomy of irregular echinoid Clypeaster humilis from the Red Sea: implications for taxonomic resolution along taphonomic grades. In: Ausich WI, Webster GD (eds) Echinoderm paleobiology. Indiana University, Bloomington, pp 115–128

    Google Scholar 

  • Nebelsick JH (2020) Ecology of clypeasteroids. In: Lawrence JM (ed) Biology and ecology of sea urchins, 4th edn. Elsevier, Amsterdam, pp 315–332

    Google Scholar 

  • Nebelsick JH, Bassi D (2000) Diversity, growth forms and taphonomy: key factors controlling the fabric of coralline algae dominated shelf carbonates. In: Insalaco E, Skelton PW, Palmer TJ (eds) Carbonate platform systems: components and interactions, vol 178. Geological Society, London, Special Publications, London, pp 89–107

    Google Scholar 

  • Nebelsick JH, Kroh A (2002) The stormy path from life to death assemblages: the formation and preservation of mass accumulation of fossil sand dollars. Palaios 17:378–393

    Google Scholar 

  • Nebelsick JH, Schmid B, Stachowitsch M (1997) The encrustation of fossil and recent sea-urchin tests: ecological and taphonomic significance. Lethaia 30:271–284

    Google Scholar 

  • Néraudeau D, Goubert E, Lacour JM, Rouchy JM (2001) Changing biodiversity of Mediterranean irregular echinoids from the Messianian to present-day. Palaeogeogr Palaeoclimatol Palaeoecol 175:43–60

    Google Scholar 

  • Petović S, Krpo-Ćetković J (2016) How depth and substratum type affect diversity and distribution patterns of echinoderms on the continental shelf in the south-eastern Adriatic Sea? Acta Zool Bulg 68:89–96

    Google Scholar 

  • Pojeta J, Balanc M (1989) Used of Ultrasonic cleaners in Paleontological laboratories. Paleotechniques 4:213–217

    Google Scholar 

  • Rafiei B, Ahmadi Ghomi F, Shahkaram M (2011) Depositional Environments and Sequence Stratigraphy of the Fluvial Upper Red Formation (Miocene) in the Avaj Area, Qazvin Province, Iran. Neues Jahrb Geol Paläontol Abh 259:257–270

    Google Scholar 

  • Rahiminejad AH, Hassani MJ (2016) Paleoenvironmental distribution patterns of orbitolinids in the Lower Cretaceous deposits of eastern Rafsanjan, Central Iran. Mar Micropaleontol 122:53–66

    Google Scholar 

  • Rahiminejad AH, Nouradini M, Yazdi M (2017) Palaeoenvironmental analysis of scleractinian reef corals from the Oligo-Miocene Qom Formation in the Vartun section (northeastern Esfahan, central Iran). Hist Biol 29(3):384–394

    Google Scholar 

  • Rahman IA, Belaústegui Z, Zamora S, Nebelsick JH, Domènech R, Martinell J (2015) Miocene Clypeaster from Valencia (E Spain): insights into the taphonomy and ichnology of bioeroded echinoids using X-ray micro-tomography. Palaeogeogr Palaeoclimatol Palaeoecol 438:168–179

    Google Scholar 

  • Rahmani A, Vaziri-Moghaddam H, Taheri A, Ghabeishavi A (2009) A model for the paleoenvironmental distribution of larger foraminifera of Oligocene-Miocene carbonate rocks at Khaviz Anticline, Zagros Basin, SW Iran. Hist Biol 21(3–4):215–227

    Google Scholar 

  • Renema W (2006) Large benthic foraminifera from the deep photic zone of a mixed siliciclastic-carbonate shelf off East Kalimantan, Indonesia. Mar Micropaleontol 58:73–82

    Google Scholar 

  • Reuter M, Piller WE, Harzhauser M, Mandic O, Berning B, Rögl F, Kroh A, Aubry MP, Wielandt-Schuster U, Hamedani A (2009) The Oligo– Miocene Qom Formation (Iran): evidence for an early Burdigalian restriction of the Tethyan Seaway and closure of its Iranian gateways. Int J Earth Sci 98:627–650

    Google Scholar 

  • Romero J, Caus E, Rossel J (2002) A model for the palaeoenvironmental distribution of larger foraminifera based on Late Middle Eocene deposits on the margin of the south Pyrenean basin (SE Spain). Palaeogeogr Palaeoclimatol Palaeoecol 179:43–56

    Google Scholar 

  • Roozpeykar A, Maghfouri Moghaddam I (2016) Benthic foraminifera as biostratigraphical and paleoecological indicators: an example from Oligo-Miocene deposits in the SW of Zagros basin, Iran. Geosci Front 7:125–140

    Google Scholar 

  • Roozpeykar A, Maghfouri-Moghaddam I, Yazdi M, Yousefi-Yegane B (2019) Facies and paleoenvironmental reconstruction of Early-Middle Miocene deposits in the north-west of the Zagros Basin, Iran. Geol Carpath 70(1):75–87

    Google Scholar 

  • Rose EPF, Poddubiuk RH (1987) Morphological variation in the Cenozoic echinoid Clypeaster and its ecological and stratigraphical significance. Ann Inst Geol Public Hung 70:463–469

    Google Scholar 

  • Sadeghi R, Vaziri-Moghaddam H, Taheri A (2009) Biostratigraphy and paleoecology of the Oligo-Miocene succession in Fars and Khuzestan areas (Zagros Basin, SW Iran). Hist Biol 21:17–31

    Google Scholar 

  • Sadeghi R, Vaziri-Moghaddam H, Taheri A (2011) Microfacies and sedimentary environment of the Oligocene sequence (Asmari Formation) in Fars sub-basin, Zagros Mountains, southwest Iran. Facies 57:431–446

    Google Scholar 

  • Sahraeyan M, Bahrami M, Arzaghi S (2014) Facies analysis and depositional environments of the Oligocene-Miocene Asmari Formation, Zagros Basin, Iran. Geosci Front 5:103–112

    Google Scholar 

  • Santos AG, Mayoral EJ (2008) Colonization by barnacles on fossil Clypeaster: an exceptional example of larval settlement. Lethaia 41:317–332

    Google Scholar 

  • Sarkar S, Ghosh AK, Narasimha Rao GM (2016) Coralline Algae and Benthic Foraminifera from the Long Formation (middle Miocene) of the Little Andaman Island, India: biofacies Analysis, Systematics and Palaeoenvironmental Implications. J Geol Soc India 87:69–84

    Google Scholar 

  • Schiaparelli S, Franci G, Albertelli G, Cattaneo-Vietti R (2005) A nondestructive method to evaluate population structure and bioerosion activity of the boring bivalve Gastrochaena dubia. J Coast Res 21:383–386

    Google Scholar 

  • Schuster F, Wielandt U (1999) Oligocene and early Miocene coral faunas from Iran: palaeoecology and palaeobiogeography. Int J Earth Sci 88:571–581

    Google Scholar 

  • Seilacher A (1979) Constructional morphology of sand dollars. Paleobiology 5(3):191–221

    Google Scholar 

  • Seyrafian A, Torabi H (2005) Petrofacies and sequence stratigraphy of the Qom Formation (Late Oligocene- Early Miocene?), north of Nain, Southern trend of the Central Iranian Basin. Carbonate Evaporite 20(1):82–90

    Google Scholar 

  • Smith AB (1984) Echinoid palaeobiology. George Allen and Unwin Limited, London

    Google Scholar 

  • Stöcklin J, Setudehina A (1991) Stratigraphic lexicon of Iran: Geological Survey of Iran Report 18: 1–376

  • Tawfik M, El-Sorogy A, Mowafi A, Al-Malky M (2015) Facies and sequence stratigraphy of some Miocene sediments in the Cairo-Suez District. Egypt. J Afr Earth Sci 101:84–95

    Google Scholar 

  • Telford M, Mooi R, Harold AS (1987) Feeding activities of two species of Clypeaster (Echinoides, Clypeasteroida): further evidence of clypeasteroid resource partitioning. Biol Bull 172:324–336

    Google Scholar 

  • Van Buchem FSP, Allan TL, Laursen GV, Lotfpour M, Moallemi A, Monibi S, Motiei H, Pickard NAH, Tahmasbi AR, Vedrenne V, Vincent B (2010) Regional stratigraphic architecture and reservoir types of the Oligo-Miocene deposits in the dezful Embayment (Asmari and Pabdeh Formations) SW Iran. Geol Soc Lond Spec Publ 329:219–263

    Google Scholar 

  • Vaziri-Moghaddam H, Seyrafian A, Taheri A, Motiei H (2010) Oligocene-Miocene ramp system (Asmari Formation) in the NW of the Zagros basin, Iran: microfacies, paleoenvironment and depositional sequence. Rev Mex Cienc Geol 27(1):56–71

    Google Scholar 

  • Vescogni A, Bosellini FR, Cipriani A, Gürler G, Ilgar A, Paganelli E (2014) The Dağpazarı carbonate platform (Mut Basin, Southern Turkey): facies and environmental reconstruction of a coral reef system during the Middle Miocene Climatic Optimum. Palaeogeogr Palaeoclimatol Palaeoecol 410:213–232

    Google Scholar 

  • Vinn O, Wilson M A (2013) An event bed with abundant Skolithos burrows from the late Pridoli (Silurian) of Saaremaa (Estonia). Carnets de Géologie [Notebooks on Geology], Brest, Letter 2013/02 (CG2013_L02), 83–87

  • Wilson JL (1975) Carbonate facies in geologic history. Springer, Berlin

    Google Scholar 

  • Wynd J (1965) Biofacies of the Iranian consortium agreement area: Iranian oil offshore company report 1082

  • Yazdi M, Parvanenejad Shirazi M, Rahiminejad AH, Motavalipoor R (2012) Paleobathymetry and paleoecology of colonial corals from the Oligocene-Early Miocene (?) Qom Formation (Dizlu area, central Iran). Carbonate Evaporite 27:395–405

    Google Scholar 

  • Yazdi-Moghadam M (2011) Early Oligocene larger foraminiferal biostratigraphy of the Qom Formation, South of Uromieh (NW Iran). Turk J Earth Sci 20:847–856

    Google Scholar 

  • Zágoršek K, Yazdi M, Bahrami A (2017) Cenozoic cyclostomatous bryozoans from the Qom Formation (Chahriseh area northeast of Isfahan, central Iran). N Jb Geol Paläont Abh 283(1):109–118

    Google Scholar 

  • Zahedi M (1978) Esfahan. Geological quadrangle map of Iran, No. J7. Ministery of Industry and Mines and Geological Survey of Iran. Scale: 1:250000

  • Zamora S, Mayoral E, Gámenez Vintaned JA, Bajo S, Espíez E (2008) The infaunal echinoid Micraster. Taphonomic pathways indicated by sclerozoan trace and body fossils from the Upper Cretaceous of northern Spain. Geobios 41:15–29

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kemran, Iran, under grant number 1155. Prof. Stephen K. Donovan (Naturalis Biodiversity Center, Leiden, Netherlands), Dr. Rich Mooi (California Academy of Sciences, San Francisco, U.S.A.) and Dr. Tobias B. Grun (1– Universität Tübingen, Tübingen, Germany and 2–Florida Museum of Natural History, Gainesville, Florida, USA) whose constructive guidance largely contributed to improve the paper are gratefully acknowledged. Dr. Ebrahim Mohammadi (Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran) is appreciated for his valuabale opinions about the Neogene deposits in Iran. The authors are grateful to the Editor-in-Chief (Professor Maurice Tucker), Dr. Andrea Mancosu (Università degli studi di Cagliari, Cagliari, Sardinia, Italy) and Dr. Francisco J. Vega Vera (Instituto de Geología, UNAM, México) for their helpful suggestions and comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hossein Rahiminejad.

Ethics declarations

Conflict of interest

The authors declares that they have no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahiminejad, A.H., Yazdi, M. & Bahrami, A. Palaeoenvironments and taphonomy of clypeasteroids in Miocene carbonates of the Esfahan–Sirjan Basin, central Iran. Facies 66, 14 (2020). https://doi.org/10.1007/s10347-020-00598-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-020-00598-6

Keywords

Navigation