Skip to main content
Log in

Ectoparasites of small mammals in a fragmented area of the southern Amazonia: interaction networks and correlations with seasonality and host sex

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

The present work aimed to analyze the ectoparasite-host interaction network and possible differences of this interaction related to two seasonal periods and host sex. During November 2016 and July 2017, non-flying small mammals were captured in 17 forest fragments located in the southern portion of the Amazon biome. We captured 96 individuals belonging to 10 host species that were parasitized with a total of 3668 ectoparasites. Overall, we identified 24 ectoparasite taxa belonging to the mite and insect groups Ixodida (ticks), Mesostigmata, Sarcoptiformes, Trombidiformes (mites), Phthiraptera (lice), and Siphonaptera (fleas). The interaction network between all ectoparasites and hosts showed significant deviation from random, with moderately high specialization index (H2′ = 0.80). There was seasonal difference in prevalence for Amblyomma cajennense (Fabricius) sensu stricto (s.s), Amblyomma coelebs Neumann and larvae of Amblyomma. This difference was also found in the mean intensity of infestation of Amblyomma larvae and the mite Tur aragaoi (Fonseca). Only mean intensity of infestation differed in relation to host sex for the species Marmosa constantiae Thomas. Our results demonstrate that specificity between ectoparasites and small mammals in this region is moderately high and that the pattern of aggregation of some ectoparasite taxa differed between two seasons, as well as between sexes in M. constantiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altizer S, Nunn CL, Thrall PH, Gittleman JL, Antonovics J, Cunningham AA, Dobson AP, Ezenwa V, Jones KE, Pedersen AB, Poss M, Pulliam JRC (2003) Social organization and parasite risk in mammals: integrating theory and empirical studies. Annu Rev Ecol Evol Syst 34:517–547. https://doi.org/10.1146/annurev.ecolsys.34.030102.151725

    Article  Google Scholar 

  • Alvares CL, Stape JL, Sentelhas PC, Gonçalves JLM, Spavorek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • Barros FB, Aguiar Azevedo P (2014) Common opossum (Didelphis marsupialis Linnaeus, 1758): food and medicine for people in the Amazon. J Ethnnobiol Ethnomed 10:65. https://doi.org/10.1186/1746-4269-10-65

    Article  Google Scholar 

  • Barros-Battesti DM, Arzua M, Linardi PM, Botelho JR, Sbalqueiro IJ (1998) Interrelationship between ectoparasites and wild rodents from Tijucas do Sul, state of Paraná. Brazil Mem Inst Oswaldo Cruz 93:719–725

    Article  CAS  PubMed  Google Scholar 

  • Bellay S, Oda FH, Campião KM, Yamada FH, Takemoto OEF (2018) Host-parasite networks: an integrative overview with tropical examples. In: Dáttilo W, Rico-Gray V (eds) Ecological networks in the tropics: an integrative overview of species interactions from some of the most species-rich habitats on Earth, 1st edn. Springer Publisher, New York, pp 127–140

    Chapter  Google Scholar 

  • Bittencourt EB, Rocha CFD (2003) Host-ectoparasite specificity in a small mammal community in an area of Atlantic Rain Forest (Ilha Grande, state of Rio de Janeiro), southeastern Brazil. Mem Inst Oswaldo Cruz 98:793–798

    Article  PubMed  Google Scholar 

  • Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC Ecol 6:9. https://doi.org/10.1186/1472-6785-6-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Blüthgen N (2010) Why network analysis is often disconnected from community ecology: a critique and an ecologist’s guide. Basic Appl Ecol 11:185–195. https://doi.org/10.1016/j.baae.2010.01.001

    Article  Google Scholar 

  • Bush AO, LaffertY KD, Lotz JM, Shostak AW et al (1997) Parasitology meets ecology on its own terms: Margoliset al. revisited. J Parasitol 83:575–583

    Article  CAS  PubMed  Google Scholar 

  • Castilheiro WFF, Santos-Filho M (2013) Diet of Monodelphis glirina (Mammalia: Didelphidae) in forest fragments in southern Amazon. Zoologia 30:249–254. https://doi.org/10.1590/S1984-46702013000300001

    Article  Google Scholar 

  • Cáceres (2003) NC Use of the space by the opossum Didelphis aurita Wied-Newied (Mammalia, Marsupialia) in a mixed forest fragment of southern Brazil. Rev Bras Zool 20:315–322

    Article  Google Scholar 

  • Cáceres NC, Prevedello JA, Loretto D (2012) Uso do espaço por marsupiais: Fatores influentes sobre área de vida, seleção de habitat e movimentos. In: Cáceres N (ed) Os Marsupiais do Brasil: Biologia, Ecologia e Conservação, 2nd edn. UFMS, Campo Grande, pp 325–344

    Google Scholar 

  • Cornwell WK, Ackerly DD (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monogr 79:109–126. https://doi.org/10.1890/07-1134.1

    Article  Google Scholar 

  • Dantas-Torres F, Aléssio FM, Siqueira DB, Mauffrey JF, Marvulo MF, Martins TF, Moraes-Filho J, Camargo MC, D'Auria SR, Labruna MB, Silva JC (2012) Exposure of small mammals to ticks and rickettsiae in Atlantic Forest patches in the metropolitan area of Recife, North-eastern Brazil. Parasitology 139:83–91. https://doi.org/10.1017/S0031182011001740

    Article  PubMed  Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife: threats to biodiversity and human health. Science 287:443–449

    Article  CAS  PubMed  Google Scholar 

  • de Barros LL, Guterres A, Rozental T, Oliveira RC, Mares-Guia MA, Fernandes J, Figueredo JF, Anschau I, Jesus S, Almeida ABMV, Silva VC, Via AVGM, Bonvicino CR, D’Andrea PS, Barreira JD, Lemos ERS (2014) Rickettsia bellii, Rickettsia amblyommii, and Laguna Negra hantavírus in an Indian reserve in the Brazilian Amazon. Parasites Vectors 7:191. https://doi.org/10.1186/1756-3305-7-191

    Article  Google Scholar 

  • Díaz-Nieto JF, Voss RS (2016) A revision of the didelphid marsupial genus Marmosops, Part 1. Species of the subgenus Sciophanes. Bull Am Mus Nat Hist 402:1–70

    Article  Google Scholar 

  • Dormann CF, Fruend J, Gruber B (2018) Visualising bipartite networks and calculating some (Ecological) Indices. https://cran.r-project.org/web/packages/bipartite/bipartite.pdf. Acesso em 08 de fevereiro de 2019

  • Dowling APG (2006) Mesostigmatid mites as parasites of small mammals: Systematics, ecology, and evolution of parasitic associations. In: Morand S, Krasnov BR, Poulin R (eds) Micromammals and macroparasites: from evolutionary ecology to management. Springer, Tokyo, pp 103–117

    Chapter  Google Scholar 

  • Eisenberg JF, Redford KH (1999) Mammals of the neotropics. The central neotropics, vol 3. The University of Chicago Press, Chicago

    Google Scholar 

  • Emmons LH, Feer F (1997) Neotropical rainforest mammals: A field guide, 2nd edn. The University of Chicago Press, Chicago

    Google Scholar 

  • Esser HJ, Foley JE, Bongers F, Herre EA, Miller MJ, Prins HHT, Jansen PA (2016) Host body size and the diversity of tick assemblages on Neotropical vertebrates. Int J Parasitol 5:295–304. https://doi.org/10.1016/j.ijppaw.2016.10.001

    Article  Google Scholar 

  • Estrada-Peña A, Guglielmone AA, Mangold AJ (2004) The distribuition and ecological ‘preferencial’ of the tick Amblyomma cajennense (Acari: Ixodidae), an ectoparasite of humans and other mammals in the Americas. Ann Trop Med Parasit 98:283–292. https://doi.org/10.1179/000349804225003316

    Article  PubMed  Google Scholar 

  • Fonseca FD (1938) Acarological notes. XXVI. New studies on the genus Laelaps Koch, 1836 (Acari. Laelaptidae). Memorias do Instituto Butantan 12:103–123

    Google Scholar 

  • Fonseca FD (1939) Acarological notes XXV. The giant Laelaptidae, parasites of South American rodents; new genus and species (Acari). Memórias do Instituto Butantan 12:7–102

    Google Scholar 

  • Folstad I, Karter AJ (1992) Parasites, brights males, and the immunocompetence handicap. Am Nat 139:603622

    Article  Google Scholar 

  • Furman DP (1972) Mites of the family Laelapidae in Venezuela (Acarina: Laelapidae). Brigham Young Univ Sci Bull Biol 17:1–58

    Google Scholar 

  • Gardner AL (2007) Mammals of South America, vol 1. The University of Chicago Press, London

    Google Scholar 

  • Gettinger DD, Martins-Hatano F, Lareschi M, Malcolm JR (2005) Laelapine mites (Acari: Laelapidae) associated with small mammals from Amazonas, Brazil, including a new species from marsupials. J Parasitol 91:45–48

    Article  PubMed  Google Scholar 

  • Gettinger DD, Owen RD (2016) Laelapine mite (Acari: Laelapidae) morphometric analysis reflects taxonomic and geographic clusters of South American Oryzomyines (Rodentia: Sigmodontinae). J Parasites Biodivers. https://doi.org/10.13014/K23X84KM

    Article  Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD (2002) Climate warming and disease risks for terrestrial and marine biota. Science 318:1737–1742

    Google Scholar 

  • Hurtado N, Pacheco V (2017) Revision of Neacomys spinosus (Thomas, 1882) (Rodentia:Cricetidae) with emphasis on Peruvian populations and the description of a new species. Zootaxa 4242:401–440. https://doi.org/10.11646/zootaxa.4242.3.1

    Article  PubMed  Google Scholar 

  • Kowalski K, Bogdziewicz M, Eichert U, Rychlik L (2015) Sex differences in flea infections among rodent hosts: is there a male bias? Parasitol Res 114:337–341. https://doi.org/10.1007/s00436-014-4231-z

    Article  PubMed  Google Scholar 

  • Krantz GW, Walter DE (2009) A manual of acarology. Texas Tech University Press, Texas

    Google Scholar 

  • Krasnov BR, Shenbrot GI, Khokhlova IS, Poulin R (2006) Is abundance a species attribute? An example with haematophagus ectoparasites. Oecologia 150:132–140

    Article  PubMed  Google Scholar 

  • Krasnov BR, Korallo-Vinarskaya NP, Vinaski MV, Shenbrot GI, Mouillot D, Poulin R (2008a) Searching for general patterns in parasite ecology: host identity versus environmental influence on gamasid mite assemblages in small mammals. Parasiltology 135:229–242

    Article  CAS  Google Scholar 

  • Krasnov BR, Shenbrot GI, Khokhlova IS, Mouillot D, Poulin R (2008b) Latitudinal gradients in niche breadth: haematophagous ectoparasites. J Biogeogr 35:592–601. https://doi.org/10.1111/j.1365-2699.2007.01800.x

    Article  Google Scholar 

  • Krasnov BR, Bordes F, Khokhlova IS, Morand S (2012) Gender-biased parasitism in small mammals: patterns, mechanisms, consequences. Mammalia. https://doi.org/10.1515/mammalia-2011-0108

    Article  Google Scholar 

  • Labruna MB, Terassini FA, Camargo LMA (2009) Notes on population dynamics of Amblyomma ticks (Acari: Ixodidae) in Brazil. J Parasitol 95:1016–1018

    Article  CAS  PubMed  Google Scholar 

  • Lareschi M, Galliari C (2014) Multivariate discrimination among cryptic mites of the genus Androlaelaps (Acari: Mesostigmata: Laelapidae) parasitic of sympatric akodontine rodents (Cricetidae: Sigmodontinae) in northeastern Argentina: possible evidence of host switch followed by speciation, with the description of two new species. Exp Appl Acarol 64:479–499

    Article  PubMed  Google Scholar 

  • Lareschi M, Krasnov BR (2010) Determinants of ecotparasite assemblage structure on rodent hosts from South American marshlands: the effect of host species, locality and season. Med Vet Entomol 24:284–292. https://doi.org/10.1111/j.1365-2915.2010.00880.x

    Article  CAS  PubMed  Google Scholar 

  • Lareschi M, Velazco PM (2013) Laelapinae Mites (Acari: Parasitiformes: Laelapidae) Parasitic of Sigmodontine rodents from northern Peru, with the description of a new species from Akodon aerosus (Rodentia: Cricetidae: Sigmodontinae). J Parasitol 99:189–193. https://doi.org/10.1645/GE-3241.1

    Article  PubMed  Google Scholar 

  • Laurence WF (2005) When bigger is better: the need for Amazonian mega-reserves. Trends Ecol Evol 20:645–648

    Article  Google Scholar 

  • Lima Silva LG, Ferreira DC, Rossi RV (2019) Species diversity of Marmosa subgenus Micoureus (Didelphimorphia, Didelphidae) and taxonomic evaluation of the white-bellied wolly mouse opossum, Marmosa constantiae. Zool J Linnean Soc 20:1–38. https://doi.org/10.1093/zoolinnean/zlz023

    Article  Google Scholar 

  • Linardi PM, Botelho JR (2012) Interrelationships between small mammal ectoparasites and habitats on the Maracá Island, Roraima, Brasil. Trends Entomol 8:53–62

    Google Scholar 

  • Linardi PM, Botelho JR, Rafael JA, Valle CMC, Cunha A, Machado PAR (1991) Ectoparasitos de pequenos mamíferos da Ilha de Maracá, Roraima, Brazil. I. Ectoparasitofauna, registros geográficos e de hospedeiros. Acta Amaz 21:131–140

    Article  Google Scholar 

  • Linardi PM, Guimarães LR (2000) Sifonápteros do Brasil. Museu de Zoologia USP/FAPESP, São Paulo

    Google Scholar 

  • Lopes MG, Muñoz-Leal S, de Lima JTR, Fournier GFDSR, Acosta IDCL, Martins TF, Ramirez DG, Gennari SM, Labruna MB (2018) Ticks, rickettsial and erlichial infection in small mammals from Atlantic forest remnants in northeastern Brazil. Int J Parasitol Parasites Wildl 7:380–385. https://doi.org/10.1016/j.ijppaw.2018.10.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Madinah A, Abang F, Mariana A, Abdulla MT, Mohd-Azlan J (2014) Interaction of ectoparasites-small mammals in tropical rainforest of Malaysia. Community Ecol 15:113–120. https://doi.org/10.1556/ComEc.15.2014.1.12

    Article  Google Scholar 

  • Martins TF, Barbieri ARM, Costa FB, Terassini FA, Camargo LMA, Peterka CRL, Pacheco RC, Dias RA, Nunes PH, Marcili A, Scofield A, Campos AK, Horta MC, Guilloux AGA, Benatti HR, Ramirez DG, Barros-Battesti DM, Labruna MB (2016) Geographical distribution of Amblyomma cajennense (sensu lato) ticks (Parasitiformes: Ixodidae) in Brazil, with description of the nymph of A. cajennense (sensu stricto). Parasites Vectors 9:186. https://doi.org/10.1186/s13071-016-1460-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins TF, Onofrio VC, Barros-Battesti DM, Labruna MB (2010) Nymphs of the genus Amblyomma (Acari: Ixodidae) of Brazil: descriptions, redescriptions, and identification key. Ticks Tick Borne Dis 1:75–99. https://doi.org/10.1016/j.ttbdis.2010.03.002

    Article  PubMed  Google Scholar 

  • Martins-Hatano F, Gettinger D, Bergallo HG (2002) Ecology and host specifity of Laelapine mites (Acari: Laelapidae) of small mammals in an Atlantic Forest area of Brazil. J Parasitol 88:36–40

    Article  PubMed  Google Scholar 

  • Mendes-Oliveira AC, Miranda CL (2015) Pequenos mamíferos não-voadores da Amazônia brasileira. Sociedade Brasileira de Mastozoologia, Rio de Janeiro

    Google Scholar 

  • Moore SL, Wilson K (2002) Parasites as a viability cost of sexual selection in natural populations of mammals. Science 297:2015–2018

    Article  CAS  PubMed  Google Scholar 

  • Morand S, Krasnov BR, Poulin R (2006) Micromammals and microparasites: from evolutionary ecology to management. Springer, Tokyo

    Book  Google Scholar 

  • Nava S, Guglielmone AA (2012) A meta-analysis of host specificity in Neotropical hard ticks (Acari: Ixodidadae). Bull Entomol Res 103:216–224. https://doi.org/10.1017/S0007485312000557

    Article  PubMed  Google Scholar 

  • Nieri-Bastos FA, Labruna MB, Marcili A, Durden LA, Mendonza-Uribe L, Barros-Battesti DM (2011) Morphological and molecular analsys of Ornithonyssus spp. (Acari: Macronyssidae) from small terrestrial mammals in Brazil. Exp Appl Acarol 55:305–327

    Article  PubMed  Google Scholar 

  • Nunn CL, Altizer S, Jones KE, Sechrest W (2003) Comparative tests of parasite species richness in primate. Am Nat 162:597–614

    Article  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Michin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2019) Community ecology package. https://cran.r-project.org/web/packages/vegan/vegan.pdf. Acesso em 08 de fevereiro de 2019

  • Patefield WM (1981) Algorithm AS 159: an efficient method of generating random r × c tables with given row and column totals. Appl Stat 30:91–97

    Article  Google Scholar 

  • Patton JL, Pardiñas UFJ, Elía G (2015) Mammals of South America, volume 2: Rodents. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Pinto IS, Botelho JR, Costa LP, Leite YLR, Linardi PM (2009) Siphonaptera associated with wild mammals from the central Atlantic Forest biodiversity corridor in southeastern Brazil. J Med Entomol 46:1146–1151

    Article  Google Scholar 

  • Poulin R (1999) Body size vs abundance among parasites species: positive relationships? Ecography 22:246–250

    Article  Google Scholar 

  • Priante-Filho N, Vourlits GL, Hayashi MMS, Nogueira JS, Campelo JH Jr, Nunes PC, Souza LS, Coutos EG, Hoeger W, Raiter F, Trienweiler JL, Miranda EJ, Priante PC, Fritzen CL, Lacerda M, Pereira LC, Biudes MS, Suli GS, Shiraiwa S, Paulo SR, Silveira M (2004) Comparison of the mass and energy exchange of a pasture and a mature transitional tropical forest of the southern Amazon basin during a seasonal transition. Glob Chang Biol 10:863–876

    Article  Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Reis FS, Barros MC, Fraga EC, Penha TA, Teixeira WC, Santos ACG, Guerra RMSNC (2008) Ectoparasitos de pequenos mamíferos silvestres de áreas adjacentes ao rio Itapecuru e área de preservação ambiental do Inhamum, estado do Maranhão, Brasil. Rev Bras Parasitol Vet 17:69–74

    PubMed  Google Scholar 

  • Roberts ML, Buchanan KL, Evans MR (2004) Testing the immunocompetence handicap hypothesis: a review of the evidence. Anim Behav 68:227–239

    Article  Google Scholar 

  • Rueda MC, Ramíres GF, Silva DJ, Sanaiotti TM (2013) Aproximación a la biología de la zarigüeya común (Didelphis marsupialis). Bol Cient Mus Hist Nat 17:141–153

    Google Scholar 

  • Santos-Filho M, Peres CA, Silva DJ, Saniotti TM (2012) Habitat patch and matrix effects on small-mammal persistence in Amazonian forest fragments. Biodivers Conserv 21:1127–1147

    Article  Google Scholar 

  • Semedo TBF, Brandão MV, Carmignotto AP, Nunes MS, Farias IP, Silva MNF, Rossi RV (2014) Taxonomic status and phylogenetic relationships of Marmosa agilis peruana Tate, 1931 (Didelphimorphia: Didelphidae), with comments on the morphological variation of Gracilinanus from central-western Brazil. Zool J Linnean Soc 173:190–216. https://doi.org/10.1111/zoj.12203

    Article  Google Scholar 

  • Soares HS, Barbieri ARM, Martins TF, Minervino AHH, Lima JTR, Marcili A, Gennari AM, Labruna MB (2015) Ticks and rickettsial infection in the wildlife of two regions of the Brazilian Amazon. Exp Appl Acarol 65:125–140

    Article  PubMed  Google Scholar 

  • Spikett A, Junker K, Krasnov BR, Haukisalmi V, Matthee S (2017) Intra-and interspecific similarity in species composition of helminth communities in two closely-related rodents from South Africa. Parasitology 144:1211–1220. https://doi.org/10.1017/S003118201700049X

    Article  Google Scholar 

  • Sponchiado J, Melo GL, Landulfo GA, Jacinavicius FC, Barros-Battesti DM, Cáceres NC (2015a) Interaction of ectoparasites (Mesostigmata, Phthiraptera and Siphonaptera) with small mammals in Cerrado fragments, western Brazil. Exp Appl Acarol 66:369–381

    Article  PubMed  Google Scholar 

  • Sponchiado J, Melo GL, Martins TF, Krawczak FS, Jacinavicius FC, Labruna MB, Barros-Battesti DM, Cáceres NC (2016) Ectoparasites of small-mammals: determinants of community structure in South American savannah. Parasitology 144:475–483. https://doi.org/10.1017/S0031182016001906

    Article  PubMed  Google Scholar 

  • Sponchiado J, Melo GL, Martins TF, Krawezak FS, Labruna MB, Cáceres NC (2015b) Association patterns of ticks (Acari: Ixodida: Ixodidae, Argasidae) of small mammals in Cerrado fragmnets, western Brazil. Exp Appl Acarol 65:389–401

    Article  PubMed  Google Scholar 

  • Suárez-Villota EY, Carmignotto AP, Brandão MV, Percequillo AR, Silva MJJ (2018) Systematics of the genus Oecomys (Sigmodontinae: Oryzomyini): molecular phylogenetic, cytogenetic and morphological approaches reveal cryptic species. Zool J Linnean Soc. https://doi.org/10.1093/zoolinnean/zlx095/4757477

    Article  Google Scholar 

  • Vidal-Martínez VM, Wunderlich AC (2017) Parasites as bioindicators of environmental degradation in Latin America: a meta-analysis. J Helminthol 91:165–173

    Article  PubMed  Google Scholar 

  • Voss RS, Fleck DW, Jansa SA (2019) Mammalian diversity and matses ethnomammalogy in Amazonian Peru Part 3: Marsupials (Didelphimorphia). Bull Am Mus Nat Hist 432:87

    Google Scholar 

  • Walter DE, Lindquist EE, Smith IM, Cook DR, Krantz GW (2009) Order Trombidiformes. In: Krantz GW, Walter DE (eds) A manual of acarology, 3rd edn. Tech University Press, Texas, pp 233–420

    Google Scholar 

  • Weksler M, Lemos EMS, D´Andrea PS, Bonvicino CR (2017) The taxonomic status of Oligoryzomys mattogrossae (Allen 1916) (Rodentia: Cricetidae: Sigmodontinae), reservoir of Anajatuba Hantavirus. Am Mus Novit 3880:1–32. https://doi.org/10.1206/3880.1

    Article  Google Scholar 

  • Wells K, Lakim MB, Beaucournu JC (2011) Host specificity and niche partitioning in flea-small mammal networks in Bornean rainforest. Med Vet Entomol 25:311–319. https://doi.org/10.1111/j.1365-2915.2010.00940.x

    Article  CAS  PubMed  Google Scholar 

  • Wheeler B, Torchiano M (2016) lmPerm: permutation tests for linear models. https://CRAN.R-project.org/package=lmPerm. Acesso em 14 de agosto de 2019

  • Witter R, Martins TF, Campos AK, Melo ALT, Corrêa SHR, Morgado TO, Wolf RW, May-Júnior JA, Sinkoc AL, Strüssmann C, Aguiar DM, Rossi RV, Semedo TBF, Campos Z, Desbiez ALJ, Labruna MB, Pacheco RC (2016) Rickettsial infection in ticks (Acari: Ixodidae) of wild animals in midwestern Brazil. Ticks Tick Borne Dis. https://doi.org/10.1016/j.ttbdis.2015.12.019

    Article  PubMed  Google Scholar 

  • Wood CL, Johnson PTJ (2015) A world without parasites: exploring the hidden ecology of infection. Front Ecol Environ 13:425–434. https://doi.org/10.1890/140368

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brazilian funding agencies CNPq—Conselho Nacional de Desenvolvimento Científico e Tecnológico (process #447557/2014-9 and #310352/2016), Fundação de Amparo à Pesquisa do Estado de Mato Grosso—FAPEMAT (process #477017/2011. The authors gratefully acknowledge Mr. Luiz Valdenir Pinheiro da Silva, owner of the Farm São Simão, for logistic support during field work; Jeison Lisboa, João Pedro M. Bottan, Juliana Volpe, Juliane Saldanha, Lorena Amorim, Luan G. L. Silva, Mariene Torres, Ricardo Firmino and Vinícius Terres for their valuable help during field sampling of small mammals; and the taxidermist Elton Pinho for preparation of specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravena F. B. de Mendonça.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Mendonça, R.F.B., Colle, A.C., Freitas, L.C. et al. Ectoparasites of small mammals in a fragmented area of the southern Amazonia: interaction networks and correlations with seasonality and host sex. Exp Appl Acarol 81, 117–134 (2020). https://doi.org/10.1007/s10493-020-00491-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-020-00491-5

Keywords

Navigation