Skip to main content
Log in

De novo sequence of the mitochondrial genome of Tyrophagus putrescentiae (Acari: Sarcoptiformes) including 22 tRNA sequences and the largest non-coding region

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

In this study, we de novo sequenced and analyzed the circular mitochondrial genome (mitogenome) of Tyrophagus putrescentiae. It was 14,156 bp long and contained a complete set of 37 genes, contrary to the initial published sequences; it included 22 tRNA sequences and the largest non-coding region. The mtDNA gene order of T. putrescentiae was found to be identical to that of Aleuroglyphus ovatus, Caloglyphus berlesei, and Rhizoglyphus robini (all Acaroidea). Most tRNAs of T. putrescentiae lack at least a D-arm or T-arm. Tyrophagus putrescentiae tRNAs also shared considerable structural and sequence similarity with the tRNAs of other reported Acaroidea species that have the full set of tRNAs. The largest non-coding region was located between trnF and trnS1, and it contained a microsatellite-like (AT)n sequence, short palindromic sequences, and several hairpin loops, as observed in other reported Acaroidea species (excepting Tyrophagus longior).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF (2013) MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 69:313–319

    Article  Google Scholar 

  • Dermauw W, Van Leeuwen T, Vanholme B, Tirry L (2009) The complete mitochondrial genome of the house dust mite Dermatophagoides pteronyssinus (Trouessart): a novel gene arrangement among arthropods. BMC Genom 10:107

    Article  Google Scholar 

  • Domes K, Maraun M, Scheu S, Cameron SL (2008) The complete mitochondrial genome of the sexual oribatid mite Steganacarus magnus: genome rearrangements and loss of tRNAs. BMC Genom 9:532

    Article  Google Scholar 

  • Duchêne A-M, Pujol C, Maréchal-Drouard L (2009) Import of tRNAs and aminoacyl-tRNA synthetases into mitochondria. Curr Genet 55(1):1–18

    Article  Google Scholar 

  • Edwards DD, Jackson LE, Johnson AJ, Ernsting BR (2011) Mitochondrial genome sequence of Unionicola parkeri (Acari: Trombidiformes: Unionicolidae): molecular synapomorphies between closely-related Unionicola gill mites. Exp Appl Acarol 54:105–117

    Article  Google Scholar 

  • Esteban R, Doña J, Vierna J, Vizcaíno A, Serrano D, Jovani R (2018) The complete mitochondrial genome of the feather mite Trouessartia rubecula Jablonska, 1968 (Astigmata: Analgoidea: Trouessartiidae). Mitochondrial DNA Part B 3:652–654

    Article  Google Scholar 

  • Gu XB, Liu GH, Song HQ, Liu TY, Yang GY, Zhu XQ (2014) The complete mitochondrial genome of the scab mite Psoroptes cuniculi (Arthropoda: Arachnida) provides insights into Acari phylogeny. Part Fibre Toxicol 7:340

    Google Scholar 

  • Han Y-D, Min G-S (2017) Complete mitochondrial genome of the feather mite Ardeacarus ardeae (Acari, Sarcoptiformes, Pterolichidae). Mitochondrial DNA Part B 2:41–42

    Article  Google Scholar 

  • Hughes AM (1976) The mites of stored food and houses, 2nd edn. HM Stationery Office, London, pp 77–79

    Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software v.7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  Google Scholar 

  • Klimov PB, OConnor BM (2009) Improved tRNA prediction in the American house dust mite reveals widespread occurrence of extremely short minimal tRNAs in acariform mites. BMC Genom 10:598

    Article  Google Scholar 

  • Larkin MA, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X v.2.0. Bioinformatics 23(21):2947–2948

    Article  CAS  Google Scholar 

  • Lavrov DV, Boore JL, Brown WM (2000) The complete mitochondrial DNA sequence of the horseshoe crab Limulus polyphemus. Mol Biol Evol 17:813

    Article  CAS  Google Scholar 

  • Laslett D, Canbäck B (2008) ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 24:172–175

    Article  CAS  Google Scholar 

  • Lee C-C, Wang J (2016) The complete mitochondrial genome of Histiostoma blomquisti (Acari: Histiostomatidae). Mitochondrial DNA Part B 1:671–673

    Article  Google Scholar 

  • Li WN, Xue XF (2019) Mitochondrial genome reorganization provides insights into the relationship between oribatid mites and astigmatid mites (Acari: Sarcoptiformes: Oribatida). Zool J Linn Soc 187:585–598

    Article  Google Scholar 

  • Lorenz R, Bernhart SH, Siederdissen CHZ, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA Package 2.0. Algorithms Mol Biol 6:26

    Article  Google Scholar 

  • Masta SE, Boore JL (2008) Parallel evolution of truncated transfer RNA genes in arachnid mitochondrial genomes. Mol Biol Evol 25:949–959

    Article  CAS  Google Scholar 

  • Minoche AE, Dohm JC, Heinz H (2011) Evaluation of genomic high-throughput sequencing data generated on illumina HiSeq and genome analyzer systems. Genome Biol 12:R112

    Article  CAS  Google Scholar 

  • Mofiz E, Seemann T, Bahlo M, Holt D, Currie BJ, Fischer K, Papenfuss AT (2016) Mitochondrial genome sequence of the scabies mite provides insight into the genetic diversity of individual scabies infections. PLoS Negl Trop Dis 10(2):e0004384

    Article  Google Scholar 

  • Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474

    Article  CAS  Google Scholar 

  • Que S, Zou Z, Xin T, Xia B (2014) Complete mitochondrial genome of the mold mite, Tyrophagus putrescentiae (Acari: Acaridae). Mitochondrial DNA 27:688–689

    Article  Google Scholar 

  • Schäffer S, Koblmüller S, Klymiuk I, Thallinger GG (2018) The mitochondrial genome of the oribatid mite Paraleius leontonychus: new insights into tRNA evolution and phylogenetic relationships in acariform mites. Sci Rep 8:7558

    Article  Google Scholar 

  • Schattner P, Brooks AN, Lowe MT (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Web Serv Issue 33:686–689

    Google Scholar 

  • Staton JL, Daehler LL, Brown WM (1997) Mitochondrial gene arrangement of the horseshoe crab Limulus polyphemus L.: conservation of major features among arthropod classes. Mol Biol Evol 14:867–874

    Article  CAS  Google Scholar 

  • Sun E-T, Li C-P, Nie L-W, Jiang Y-X (2014a) The complete mitochondrial genome of the brown leg mite, Aleuroglyphus ovatus (Acari: Sarcoptiformes): evaluation of largest non-coding region and unique tRNAs. Exp Appl Acarol 64:141–157

    Article  CAS  Google Scholar 

  • Sun ET, Li CP, Li S, Gu SL, Nie LW (2014b) Complete mitochondrial genome of Caloglyphus berlesei (Acaridae: Astigmata): the first representative of the genus Caloglyphus. J Stored Prod Res 59:282–284

    Article  Google Scholar 

  • Xue XF, Deng W, Qu S-X, Hong X-Y, Shao R (2018) The mitochondrial genomes of sarcoptiform mites: are any transfer RNA genes really lost? BMC Genom 19:466

    Article  Google Scholar 

  • Yang B, Li C (2015) Characterization of the complete mitochondrial genome of the storage mite pest Tyrophagus longior (Gervais) (Acari: Acaridae) and comparative mitogenomic analysis of four acarid mites. Gene 576:807–819

    Article  Google Scholar 

  • Yuan ML, Wei DD, Wang BJ, Dou W, Wang JJ (2010) The complete mitochondrial genome of the citrus red mite Panonychus citri (Acari: Tetranychidae): high genome rearrangement and extremely truncated tRNAs. BMC Genom 11:597

    Article  Google Scholar 

Download references

Acknowledgements

We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript and the authors would like to acknowledge the support by the Natural science Foundation of China (No. 31870352) and the Youth Talent Support of Wannan Medical College (No. wyqnyx201902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to En-Tao Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Mitochondrial genome organization of Tyrophagus putrescentiae. Additional file1 (DOCX 21 kb)

10493_2020_477_MOESM2_ESM.docx

Alignment of the inferred secondary structures of tRNA genes from Tyrophagus putrescentiae (Tp) and three other Acaroidea mites: Aleuroglyphus ovatus (Ao), Caloglyphus berlesei (Cb), Rhizoglyphus robini (Rr). Conserved nucleotides are shaded in gray across these four Acaroidea mites. Nucleotides that pair at the arms (acceptor arm, D arm, anticodon arm, and T arm) are underlined. Sequences of anticodons are in boldface. Alignment of the inferred secondary structures of tRNA genes from T. putrescentiae (Tp) and three other Acaroidea mites: A. ovatus (Ao), C. berlesei (Cb), R. robini (Rr). Additional file2 (DOCX 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, WX., Dong, FY., Sun, ET. et al. De novo sequence of the mitochondrial genome of Tyrophagus putrescentiae (Acari: Sarcoptiformes) including 22 tRNA sequences and the largest non-coding region. Exp Appl Acarol 80, 521–530 (2020). https://doi.org/10.1007/s10493-020-00477-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-020-00477-3

Keywords

Navigation