Skip to main content
Log in

Dynamic fracture of concrete in compression: 3D finite element analysis at meso- and macro-scale

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Fracture of normal strength concrete cylinder under static and dynamic loading is studied numerically. 3D finite element simulations are carried out at macro- and meso-scale. At meso-scale the analysis is performed with and without accounting for the interface zone (IZ) between aggregate and mortar. Aggregate is assumed to be linear elastic, and mortar is modeled using rate-dependent microplane model. To better understand behavior of concrete under dynamic fracture in compression, a parametric study is carried out to investigate the influence of the volume fraction of the aggregate, the role of IZ, the influence of confinement at the loading surface, the role of concrete quality and the influence of the size of the test specimen. The comparison between meso-scale and macro-scale analysis shows that the macroscopic analysis is principally able to account for the major effects related to dynamic fracture of concrete. Dynamic resistance of concrete in compression (apparent strength) depends on a number of parameters, and it is mainly influenced by the inertia effects that are closely related to the load-induced damage. Finally, it is pointed out that dynamic increase factor for compressive strength (CDIF), such as currently defined in design codes, for relatively high loading rates does not represent the true material strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Ožbolt, J., Bošniak, J., Sola, E.: Dynamic fracture of concrete compact tension specimen: experimental and numerical study. Int. J. Solids Struct. 50, 4270–4278 (2013)

    Article  Google Scholar 

  2. Ožbolt, J., Sharma, A., Irhan, B., Sola, E.: Tensile behavior of concrete under high loading rates. Int. J. Impact Eng. 69, 55–68 (2014)

    Article  Google Scholar 

  3. Pająk, M.: The influence of the strain rate on the strength of concrete taking into account the experimental techniques. Archit. Civ. Eng. Environ. 3, 77–86 (2011)

    Google Scholar 

  4. Abrams, D.A.: Effect of rate of application of load on the compressive strength of concrete. ASTM J. 17, 364–377 (1917)

    Google Scholar 

  5. Evans, R.H.: Effect of rate of loading on the mechanical properties of some materials. J. Inst. Civ. Eng. 18, 296–306 (1942)

    Article  Google Scholar 

  6. Hughes, B.P., Watson, A.J.: Compressive strength and ultimate strain of concrete under impact loading. Mag. Concr. Res. 30(105), 189–199 (1978)

    Article  Google Scholar 

  7. Malvern, L.E., Ross, C.A.: Dynamic response of concrete and concrete structures. Second Annual Technical Report. AFOSR Contr. No. F49620-83-K007 (1985)

  8. Ross, C.A., Thompson, P.Y., Tedesco, J.W.: Split-Hopkinson pressure-bar tests on concrete and mortar in tension and compression. ACI Mater. J. 86, 475–481 (1989)

    Google Scholar 

  9. Ross, C.A., Tedesco, J.W., Kuennen, S.T.: Effects of strain rate on concrete strength. ACI Mater. J. 91(1), 37–47 (1995)

    Google Scholar 

  10. Tedesco, J.W., Ross, C.A.: Strain-rate-dependent constitutive equations for concrete. ASME J. Press. Vessel Technol. 120, 398–405 (1998)

    Article  Google Scholar 

  11. Grote, D.L., Park, S.W., Zhou, M.: Dynamic behavior of concrete at high strain-rates and pressures: I. experimental characterization. Int. J. Impact Eng. 25, 869–886 (2001)

    Article  Google Scholar 

  12. Hao, Y., Hao, H., Jiang, G.P., Zhou, Y.: Experimental confirmation of some factors influencing dynamic concrete compressive strengths in high-speed impact tests. Cem. Concr. Res. 52, 63–70 (2013)

    Article  Google Scholar 

  13. Chen, X., Wu, S., Zhou, J.: Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete. Constr. Build. Mater. 47, 419–430 (2013)

    Article  ADS  Google Scholar 

  14. Salloum, Y.A., Almusallam, T., Ibrahim, S.M., Abbas, H., Alsayed, S.: Rate dependent behavior and modeling of concrete based on SHPB. Cem. Concr. Compos. 55, 34–44 (2015)

    Article  Google Scholar 

  15. Chen, X.W., Lv, T., Chen, G.: Experimental and Numerical Studies on the Dynamic Behaviors of Concrete Materials Based on the Waveform Features in SHPB Tests. EPJ Web of Conferences (DYMAT) (2018)

  16. Comite Euro-International du Beton. CEB-FIP model code 1990. Redwood Books, Trowbridge, (1993)

  17. Li, Q.M., Meng, H.: About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. Int. J. Solids Struct. 40, 343–360 (2003)

    Article  Google Scholar 

  18. Hao, Y., Hao, H., Li, Z.X.: Influence of end friction confinement on impact tests of concrete material at high strain rate. Int. J. Impact Eng. 60, 82–106 (2013)

    Article  Google Scholar 

  19. Bishoff, P.H., Perry, S.H.: Compressive behavior of concrete at high strain rates. Mater. Struct. 24, 425–450 (1991)

    Article  Google Scholar 

  20. Sharma, A., Ožbolt, J.: Influence of high loading rates on behavior of reinforced concrete beams with different aspect ratios—a numerical study. Eng. Struct. 79, 297–308 (2014)

    Article  Google Scholar 

  21. Hao, Y., Hao, H., Li, Z.H.: Numerical analysis of lateral inertia confinement effects on impact test of concrete compressive material properties. Int. J. Prot. Struct. 1(1), 145–167 (2010)

    Article  Google Scholar 

  22. Hao, Y., Hao, H.: Numerical evaluation of the influence of aggregates on concrete compressive strength at high strain rate. Int. J. Prot. Struct. 2(2), 177–206 (2011)

    Article  Google Scholar 

  23. Hao, Y., Hao, H., Zhang, X.H.: Numerical analysis of concrete material properties at high strain rate under direct tension. Int. J. Impact Eng. 39, 51–62 (2012)

    Article  Google Scholar 

  24. Zhou, X.Q., Hao, H.: Modelling of compressive behavior of concrete-like materials at high strain rate. Int. Solids Struct. 45, 4648–4661 (2008)

    Article  Google Scholar 

  25. Zhang, M., Wu, H.J., Li, Q.M., Huang, F.L.: Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part I: experiments. Int. J. Impact Eng. 36, 1327–1334 (2009)

    Article  Google Scholar 

  26. Li, Q.M., Lu, Y.B., Meng, H.: Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part II: numerical simulation. Int. J. Impact Eng. 36, 1335–1345 (2009)

    Article  Google Scholar 

  27. Song, Z., Lu, Y.: Mesoscopic analysis of concrete under excessively high strain rate compression and implications on interpretation of test data. Int. J. Impact Eng. 46, 41–55 (2012)

    Article  Google Scholar 

  28. Huang, Y.J., Yang, Z.J., Chen, X.W., Liu, G.H.: Monte Carlo simulations of meso-scale dynamic compressive behavior of concrete based on X-ray computed tomography images. Int. J. Impact Eng. 97, 102–11 (2016)

    Article  Google Scholar 

  29. Lv, T.H., Chen, X.W., Chen, G.: The 3D meso-scale model and numerical tests of split Hopkinson pressure bar of concrete specimen. Constr. Build. Mater. 160, 744–764 (2018)

    Article  Google Scholar 

  30. Tasong, W.A., Lynsdale, C.J., Cripps, J.C.: Aggregate-cement paste interface part I. Influence of aggregate geochemistry. Cem. Concr. Res. 29, 1019–1025 (1999)

    Article  Google Scholar 

  31. Xiao, J., Li, W., Sun, Z., Lange, D.A., Shah, S.P.: Properties of interfacial transition zones in recycled aggregate concrete tested by nanoindentation. Cem. Concr. Compos. 37, 276–292 (2013)

    Article  Google Scholar 

  32. Ožbolt, J.: MASA—Macroscopic Space Analysis. Internal Report, Institute für Werkstoffe im Bauwesen, Universität Stuttgart, Germany (1998)

  33. Ožbolt, J., Sharma, A., Reinhardt, H.W.: Dynamic fracture of concrete—compact tension specimen. Int. J. Solids Struct. 48, 1534–1543 (2011)

    Article  Google Scholar 

  34. Mondal, P., Shah, S.P., Marks, L.D.: Nanomechanical properties of interfacial transition zone in concrete. In: Proceedings of Nanotechnology in Construction, Vol 3, pp. 315–320. Springer (2009)

  35. Ožbolt, J., Li, Y., Kožar, I.: Microplane model for concrete with relaxed kinematic constraint. Int. J. Solids Struct. 38, 2683–2711 (2001)

    Article  Google Scholar 

  36. Bažant, Z.P., Adley, M.D., Carol, I., Jirasek, M., Akers, S.A., Rohani, B., et al.: Large-strain generalization of microplane model for concrete and application. J. Eng. Mech. (ASCE) 126(9), 971–980 (2000a)

    Article  Google Scholar 

  37. Bažant, Z.P., Caner, F.C., Adley, M.D., Akers, S.A.: Fracturing rate effect and creep in microplane model for dynamics. J. Eng. Mech. (ASCE) 126(9), 962–970 (2000b)

    Article  Google Scholar 

  38. Dilger, W.H., Koch, R., Kowalczyk, R.: Ductility of Plain and Confined Concrete Under Different Strain Rates. American Concrete Institute. Special publication, Detroit (1978)

    Google Scholar 

  39. Bažant, Z.P., Oh, B.H.: Crack band theory for fracture of concrete. Mater. Struct. RILEM 16(93), 155–177 (1983)

    Google Scholar 

  40. Zhang, S., Zhang, C., Liao, L., Wang, C.: Numerical study of the effect of ITZ on the failure behavior of concrete by using particle element modelling. Constr. Build. Mater. 170, 776–789 (2018)

    Article  Google Scholar 

  41. Wee, T., Chin, M.S., Mansur, M.A.: Stress-strain relationship of high-strength concrete in compression. J. Mater. Civ. Eng. 8(2), 70–76 (1996)

    Article  Google Scholar 

  42. Kumar, S., Mukhopadhyaya, T., Waseem, S.A., Singh, B., Iqbal, M.A.: Effect of platen restraint on stress-strain behaviour of concrete under uniaxial compression: a comparative study. Strength Mater. (2016). https://doi.org/10.1007/s11223-016-9802-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena Gambarelli.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gambarelli, S., Ožbolt, J. Dynamic fracture of concrete in compression: 3D finite element analysis at meso- and macro-scale. Continuum Mech. Thermodyn. 32, 1803–1821 (2020). https://doi.org/10.1007/s00161-020-00881-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-020-00881-5

Keywords

Navigation