Skip to main content
Log in

Equilibrium stability of nonlinear elastic sphere with distributed dislocations

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

An exact formulation and a solution of the stability problem for a three-dimensional elastic body containing distributed dislocations are given. The buckling phenomenon for a hollow nonlinear elastic sphere of the semi-linear (harmonic) material with edge dislocations is studied. The study is carried out within the framework of the continuum theory of continuously distributed dislocations using the bifurcation method of buckling analysis. The bifurcation method is to find the equilibrium positions of an elastic body, which differ little from the subcritical (unperturbed) state. The perturbed equilibrium state is described by a linearized boundary value problem. By solving a homogeneous linear boundary value problem, the minimum critical value of the external pressure at which the sphere loses stability is found. The influence of dislocations on the buckling of both thin and thick spherical shells is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Berdichevsky, V.L., Sedov, L.I.: Dynamic theory of continuously distributed dislocations. Its relation to plasticity theory. Prikl. Mat. Mekh. 31(6), 989–1006 (1967)

    Google Scholar 

  2. Bilby, B.A., Bullough, R., Smith, E.: Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. A231, 263–273 (1955)

    MathSciNet  ADS  Google Scholar 

  3. Biot, M.A.: Mechanics of Incremental Deformations. Wiley, New York (1965)

    Google Scholar 

  4. Budiansky, B., Hutchinson, J.: Buckling: progress and challenge. In: NASA Conference Publication (1979)

  5. Chen, Y.C., Haughton, D.: Stability and bifurcation of inflation of elastic cylinders. Proc. R. Soc. Lond. 459, 137–156 (2003)

    MathSciNet  MATH  ADS  Google Scholar 

  6. Clayton, J.D.: Nonlinear Mechanics of Crystals. Springer, Dordrecht (2011)

    MATH  Google Scholar 

  7. Derezin, S.V., Zubov, L.M.: Disclinations in nonlinear elasticity. Ztsch. Angew. Math. und Mech. 91, 433–442 (2011)

    MathSciNet  MATH  ADS  Google Scholar 

  8. Eremeyev, V.A., Cloud, M.J., Lebedev, L.P.: Applications of Tensor Analysis in Continuum Mechanics. World Scientific, New Jersey (2018)

    MATH  Google Scholar 

  9. Eremeyev, V.A., Freidin, A.B., Pavlyuchenko, V.N., et al.: Instability of hollow polymeric microspheres upon swelling. Dokl. Phys. 52, 37–40 (2007)

    ADS  Google Scholar 

  10. Eremeyev, V.A., Turco, E.: Enriched buckling for beam-lattice metamaterials. Mech. Res. Commun. 103, 103458 (2020)

    Google Scholar 

  11. Ericksen, J.L.: Equilibrium of bars. J. Elast. 5(3–4), 191–201 (1975)

    MathSciNet  MATH  Google Scholar 

  12. Eshelby, J.D.: The continuum theory of lattice defects. In: Seitz, F., Turnbul, D. (eds.) Solid State Physics, vol. 3, pp. 79–144. Academic Press, New York (1956)

    Google Scholar 

  13. Fu, Y.B., Ogden, R.W.: Nonlinear stability analysis of pre-stressed elastic bodies. Continuum Mech. Thermodyn. 11, 141–172 (1999)

    MathSciNet  MATH  ADS  Google Scholar 

  14. Goloveshkina, E.V., Zubov, L.M.: Universal spherically symmetric solution of nonlinear dislocation theory for incompressible isotropic elastic medium. Arch. Appl. Mech. 89(3), 409–424 (2019)

    ADS  Google Scholar 

  15. Green, A.E., Adkins, J.E.: Large Elastic Deformations and Non-linear Continuum Mechanics. Clarendon Press, Oxford (1960)

    MATH  Google Scholar 

  16. Grigolyuk, E.I., Kabanov, B.B.: The Stability of Shells. Nauka, Moscow (1978). (in Russian)

    Google Scholar 

  17. Guz, A.: Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies. Springer, Berlin (1999)

    MATH  Google Scholar 

  18. Haughton, D., Ogden, R.: Bifurcation of inflated circular cylinders of elastic material under axial loading— I. Membrane theory for thin-walled tubes. J. Mech. Phys. Solids 27(3), 179–212 (1979)

    MathSciNet  MATH  ADS  Google Scholar 

  19. Haughton, D., Ogden, R.: Bifurcation of inflated circular cylinders of elastic material under axial loading— II. Exact theory for thick-walled tubes. J. Mech. Phys. Solids 27(5), 489–512 (1979)

    MathSciNet  MATH  ADS  Google Scholar 

  20. Haughton, D.M.: Elastic membranes. Nonlinear elasticity: theory and applications, pp. 233–267 (2001)

  21. John, F.: Plane strain problems for a perfectly elastic material of harmonic type. Commun. Pure Appl. Math. 13, 239–296 (1960)

    MathSciNet  MATH  Google Scholar 

  22. Koiter, W.T.: The nonlinear buckling problem of a complete spherical shell under uniform external pressure. Univ. Lab. Eng. Mech. Rep. 412, 245–276 (1968)

    Google Scholar 

  23. Kondo, K.: On the geometrical and physical foundations in the theory of yielding. In: Proceedings of the Second Japan National Congress for Applied Mechanics, Tokyo, pp. 41–47 (1952)

  24. Kröner, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Ration. Mech. Anal. 4, 273–334 (1960)

    MathSciNet  MATH  Google Scholar 

  25. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity, Theoretical Physics, vol. 7. Pergamon, Oxford (1975)

    Google Scholar 

  26. Lastenko, M.S., Zubov, L.M.: A model of neck formation on a rod under tension. Revista Colombiana de Matemáticas 36(1), 49–57 (2002)

    MathSciNet  MATH  Google Scholar 

  27. Le, K., Stumpf, H.: A model of elastoplastic bodies with continuously distributed dislocations. Int. J. Plast. 12(5), 611–627 (1996)

    MATH  Google Scholar 

  28. Lebedev, N., Silverman, R.: Special Functions and Their Applications, Dover Books on Mathematics. Dover Publications, Mineola (2012)

    Google Scholar 

  29. Lurie, A.I.: Nonlinear Theory of Elasticity. North-Holland, Amsterdam (1990)

    MATH  Google Scholar 

  30. Lurie, A.I.: Theory of Elasticity. Springer, Berlin (2005)

    Google Scholar 

  31. Nye, J.F.: Some geometrical relations in dislocated crystals. Acta Metall. 1(2), 153–162 (1953)

    Google Scholar 

  32. Ogden, R.W.: Non-linear Elastic Deformations. Dover, New York (1997)

    Google Scholar 

  33. Samuelson, L.A., Eggwertz, S. (eds.): Shell Stability Handbook. Elsevier Applied Science, London (1992)

    Google Scholar 

  34. Sensenig, C.B.: Instability of thick elastic solids. Commun. Pure Appl. Math. 17(4), 451–491 (1964)

    MathSciNet  MATH  Google Scholar 

  35. Simmonds, J.G.: A Brief on Tensor Analysis, 2nd edn. Springer, New York (1994)

    MATH  Google Scholar 

  36. Singer, J., Arbocz, J., Weller, T.: Buckling Experiments: Experimental Methods in Buckling of Thin-Walled Structures: Shells, Built-Up Structures, Composites and Additional Topics, vol. 2. Wiley, New York (2002)

    Google Scholar 

  37. Spector, S.J.: On the absence of bifurcation for elastic bars in uniaxial tension. Arch. Ration. Mech. Anal. 85(2), 171–199 (1984)

    MathSciNet  MATH  Google Scholar 

  38. Teodosiu, C.: Elastic Models of Crystal Defects. Springer, Berlin (2013)

    MATH  Google Scholar 

  39. Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability, 2nd edn. McGraw-Hill, Auckland (1963)

    Google Scholar 

  40. Tovstik, P.E., Smirnov, A.L.: Asymptotic Methods in the Buckling Theory of Thin Shells. World Scientific, Singapore (2002)

    Google Scholar 

  41. Tvergaard, V.: Buckling behaviour of plate and shell structures. In: W. Koiter (ed.) Proceedings of 14th IUTAM Congress, vol. 72, pp. 233–247. North-Holland, Amsterdam (1976)

  42. Vakulenko, A.A.: The relationship of micro- and macroproperties in elastic–plastic media. Itogi Nauki Tekh. Ser. Mekh. Deform. Tverd. Tela 22(3), 3–54 (1991). (in Russian)

    Google Scholar 

  43. Volmir, A.S.: Stability of Deformable Systems. Nauka, Moscow (1967)

    Google Scholar 

  44. Yavary, A., Goriely, A.: Riemann–Cartan geometry of nonlinear dislocation mechanics. Arch. Ration. Mech. Anal. 205, 59–118 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Zelenin, A.A., Zubov, L.M.: Supercritical deformations of the elastic sphere. Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela (Proc. Acad. Sci. USSR. Mech. solids) 5, 76–82 (1985)

    Google Scholar 

  46. Zelenin, A.A., Zubov, L.M.: Branching of solutions of the nonlinear elasticity theory static problems. Prikl. Mat. Mech. 51(2), 275–282 (1987)

    MathSciNet  Google Scholar 

  47. Zelenin, A.A., Zubov, L.M.: The behaviour of a thick circular plate after stability loss. Prikl. Mat. Mech. 52(4), 642–650 (1988)

    MathSciNet  Google Scholar 

  48. Zelenina, A.A., Zubov, L.M.: Bending and twisting of nonlinear elastic bodies with continuously distributed dislocations. Vestn. Yuzhn. Nauchn. Tsentr. RAN 3(4), 15–22 (2009)

    Google Scholar 

  49. Zelenina, A.A., Zubov, L.M.: Nonlinear effects during the tension, bend, and torsion of elastic bodies with distributed dislocations. Dokl. Phys. 58(8), 354–357 (2013)

    ADS  Google Scholar 

  50. Zhbanova, E.V., Zubov, L.M.: The influence of distributed dislocations on large deformations of an elastic sphere. In: Naumenko, K., Aßmus, M. (eds.) Advanced Methods of Continuum Mechanics for Materials and Structures, Advanced Structured Materials, vol. 60, pp. 61–76. Springer, Singapore (2016)

    Google Scholar 

  51. Zubov, L.M.: Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies. Springer, Berlin (1997)

    MATH  Google Scholar 

  52. Zubov, L.M.: Spherically symmetric solutions in the nonlinear theory of dislocations. Dokl. Phys. 59(9), 419–422 (2014)

    Google Scholar 

  53. Zubov, L.M., Moiseyenko, S.I.: Stability of equilibrium of an elastic sphere turned inside out. Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela (Proc. Acad. Sci. USSR. Mech. solids) 5, 148–155 (1983)

    Google Scholar 

  54. Zubov, L.M., Rudev, A.N.: On the peculiarities of the loss of stability of a non-linear elastic rectangular bar. Prikl. Mat. Mech. 57(3), 65–83 (1993)

    MathSciNet  MATH  Google Scholar 

  55. Zubov, L.M., Rudev, A.N.: The instability of a stretched non-linearly elastic beam. Prikl. Mat. Mech. 60(5), 786–798 (1996)

    MathSciNet  MATH  Google Scholar 

  56. Zubov, L.M., Sheidakov, D.N.: Instability of a hollow elastic cylinder under tension, torsion, and inflation. J. Appl. Mech. 75(1), 0110021–0110026 (2008)

    Google Scholar 

  57. Zubov, L.M., Sheydakov, D.N.: The effect of torsion on the stability of an elastic cylinder under tension. Prikl. Mat. Mech. 69, 49–56 (2005)

    Google Scholar 

Download references

Acknowledgements

The reported study was funded by the Russian Foundation of Basic Research, Project Number 19-31-90045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeniya V. Goloveshkina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goloveshkina, E., Zubov, L.M. Equilibrium stability of nonlinear elastic sphere with distributed dislocations. Continuum Mech. Thermodyn. 32, 1713–1725 (2020). https://doi.org/10.1007/s00161-020-00876-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-020-00876-2

Keywords

Navigation