Skip to main content

Advertisement

Log in

Experimental study and phenomenological modelling of flaw sensitivity of two polymers used as dielectric elastomers

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The extreme stretching of dielectric elastomers in sensors, actuators and energy harvesting devices is a common phenomenon where the materials are prone to fracture under the influence of flaws and notches. In this work, we have investigated the length of flaw sensitivities of two widely used dielectric materials, acrylic (VHB) and silicone (Ecoflex) elastomers under a pure shear loading and established that the length of flaw sensitivity of acrylic is almost double than that of silicone. Therefore, the acrylic elastomer is safer to operate for small notches as compared to the silicone material. However, within the flaw-sensitive length, failure stretch, fracture toughness and failure stress are more for Ecoflex than those for VHB. It is found that the failure stretch and the fracture toughness decrease drastically after the length of flaw sensitivities for both materials. Also, the failure stress keeps on decreasing with an increase in notch length for both materials. Afterwards, a simple phenomenological relation is proposed for fitting experimental results under a pure shear loading with only two parameters. The mathematical relation is valid for both the materials and covers the notch sensitivity with a good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. An, L., Wang, F., Cheng, S., Lu, T., Wang, T.J.: Experimental investigation of the electromechanical phase transition in a dielectric elastomer tube. Smart Mater. Struct. 24, 035006 (2015)

    Article  ADS  Google Scholar 

  2. Zhang, C., Chen, H., Liu, L., Li, D.: Modelling and characterization of inflated dielectric elastomer actuators with tubular configuration. J. Phys. D. Appl. Phys. 48, 245502 (2015)

    Article  ADS  Google Scholar 

  3. Mathew, A.T., Koh, S.J.A.: Operational limits of a non-homogeneous dielectric elastomer transducer. Int. J. Smart Nano Mater. 8, 214–231 (2017)

    Article  ADS  Google Scholar 

  4. Sahu, R.K., Saini, A., Ahmad, D., Patra, K., Szpunar, J.: Estimation and validation of Maxwell stress of planar dielectric elastomer actuators. J. Mech. Sci. Technol. 30, 429–436 (2016)

    Article  Google Scholar 

  5. Saini, A., Ahmad, D., Patra, K.: Electromechanical performance analysis of inflated dielectric elastomer membrane for micro pump applications. In: Processing of the SPIE, vol. 9798, p. 979813 (2016)

  6. Kumar, A., Ahmad, D., Patra, K.: Dependence of actuation strain of dielectric elastomer on equi-biaxial, pure shear and uniaxial modes of pre-stretching. In: IOP Conference Series: Materials Science and Engineering, vol. 310, p. 012104 (2018)

  7. McKay, T.G., O’Brien, B.M., Calius, E.P., Anderson, I.A.: Soft generators using dielectric elastomers. Appl. Phys. Lett. 98, 1–4 (2011)

    Article  Google Scholar 

  8. Zhao, X., Suo, Z.: Theory of dielectric elastomers capable of giant deformation of actuation. Phys. Rev. Lett. 104, 1–4 (2010)

    Google Scholar 

  9. Koo, I.M., Jung, K., Koo, J.C., Nam, J., Lee, Y.K.: Development of soft-actuator-based wearable tactile display. IEEE Trans. Robot. 24, 549–558 (2008)

    Article  Google Scholar 

  10. Slesarenko, V., Engelkemier, S., Galich, P., Vladimirsky, D., Klein, G., Rudykh, S.: Strategies to control performance of 3D-printed, cable-driven soft polymer actuators: from simple architectures to gripper prototype. Polymers 10(8), 846 (2018)

    Article  Google Scholar 

  11. Mehnert, M., Hossain, M., Steinmann, P.: Experimental and numerical investigations of the electro-viscoelastic behavior of VHB 4905. Eur. J. Mech. A Solids 77, 103797 (2019)

    Article  ADS  Google Scholar 

  12. Cohen, N., Oren, S.S., deBotton, G.: The evolution of the dielectric constant in various polymers subjected to uniaxial stretch. Extrem. Mech. Lett. 16, 1–5 (2017)

    Article  Google Scholar 

  13. Schmidt, A., Rothemund, P., Mazza, E.: Multiaxial deformation and failure of acrylic elastomer membranes. Sens. Actuators A Phys. 174, 133–138 (2012)

    Article  Google Scholar 

  14. Huang, J., Shian, S., Suo, Z., Clarke, D.R.: Maximizing the energy density of dielectric elastomer generators using equi-biaxial loading. Adv. Funct. Mater. 23, 5056–5061 (2013)

    Article  Google Scholar 

  15. Hamdi, A., Nait, A.M., Ait, H.N., Heuillet, P., Benseddiq, N.: A fracture criterion of rubber-like materials under plane stress conditions. Polym. Test. 25, 994–1005 (2006)

    Article  Google Scholar 

  16. Pharr, M., Sun, J.Y., Suo, Z.: Rupture of a highly stretchable acrylic dielectric elastomer. J. Appl. Phys. 111, 104114 (2012)

    Article  ADS  Google Scholar 

  17. Kaltseis, R.: Natural rubber for sustainable high-power electrical energy generation. RSC Adv. 4, 27905–27913 (2014)

    Article  Google Scholar 

  18. Koh, S.J.A.: High-performance electromechanical transduction using laterally-constrained dielectric elastomers part I: actuation processes. J. Mech. Phys. Solids 105, 81–94 (2017)

    Article  ADS  Google Scholar 

  19. Hodgins, M., Seelecke, S.: Systematic experimental study of pure shear type dielectric elastomer membranes with different electrode and film thicknesses. Smart Mater. Struct. 25, 095001 (2016)

    Article  ADS  Google Scholar 

  20. Hossain, M., Vu, D.K., Steinmann, P.: A comprehensive characterization of the electro-mechanically coupled properties of VHB 4910 polymer. Arch. Appl. Mech. 85, 523–537 (2015)

    Article  ADS  Google Scholar 

  21. Hossain, M., Vu, D.K., Steinmann, P.: Experimental study and numerical modelling of VHB 4910 polymer. Comput. Mater. Sci. 59, 65–74 (2012)

    Article  Google Scholar 

  22. Mehnert, M., Steinmann, P.: On the influence of the compliant electrodes on the mechanical behavior of VHB 4905. Comput. Mater. Sci. 160, 287–294 (2019)

    Article  Google Scholar 

  23. Liao, Z., Yao, X.H., Zhang, L.H., Hossain, M., Wang, J., Zang, S.G.: Temperature and strain rate dependent large tensile deformation and tensile failure behaviour of transparent polyurethane at intermediate strain rates. Int. J. Impact Eng. 129, 152–167 (2019)

    Article  Google Scholar 

  24. Liao, Z., Hossain, M., Yao, X.H., Mehnert, M., Steinmann, P.: On thermo-viscoelastic experimental characterisations and numerical modelling of VHB polymer. Int. J. Non-Linear Mech. (2019) (in review)

  25. Wissler, M., Mazza, E.: Electromechanical coupling in dielectric elastomer actuators. Sens. Actuators A Phys. 138, 384–393 (2007)

    Article  Google Scholar 

  26. Schmidt, A., Bergamini, A., Kovacs, G., Mazza, E.: Multiaxial mechanical characterization of interpenetrating polymer network reinforced acrylic elastomer. Exp. Mech. 51, 1421–1433 (2011)

    Article  Google Scholar 

  27. Goh, Y.F., Akbari, S., Khanh Vo, T.V., Koh, S.J.A.: Electrically-induced actuation of acrylic-based dielectric elastomers in excess of 500% strain. Soft Robot. (2018). https://doi.org/10.1089/soro.2017.0078

    Article  Google Scholar 

  28. Smith, T.L.: Ultimate tensile properties of elastomers. II. Comparison of failure envelopes for unfilled vulcanizates. J. Appl. Phys. 35, 27–36 (1964)

    Article  ADS  Google Scholar 

  29. Fan, W., Wang, Y., Cai, S.: Fatigue fracture of a highly stretchable acrylic elastomer. Polym. Test. 61, 373–377 (2017)

    Article  Google Scholar 

  30. Ahmad, D., Patra, K.: Fracture behavior of dielectric elastomer under pure shear loading. In: IOP Conference Series: Materials Science and Engineering, vol. 229 (2017)

  31. Wang, H., Wang, K., Fan, W., Cai, S.: Rupture of swollen styrene butadiene rubber. Polym. Test. 61, 100–105 (2017)

    Article  Google Scholar 

  32. Setua, D.K., De, S.K.: Effect of short fibres on critical cut length in tensile failure of rubber vulcanizates. J. Mater. Sci. 20, 2653–2660 (1985)

    Article  ADS  Google Scholar 

  33. Akhtar, S., Bhowmick, A.K., De, P.P., De, S.K.: Tensile rupture of short fibre filled thermoplastic elastomer. J. Mater. Sci. 5, 4179–4184 (1986)

    Article  ADS  Google Scholar 

  34. Hamed, G.: Effect of crosslink density on the critical flaw size of a simple elastomer. Rubber Chem. Technol. 56, 244–291 (1983)

    Article  Google Scholar 

  35. Chen, C., Wang, Z., Suo, Z.: Flaw sensitivity of highly stretchable materials. Extrem. Mech. Lett. 10, 50–57 (2017)

    Article  Google Scholar 

  36. Rosset, S., Maffli, L., Houis, S., Shea, H.R.: An instrument to obtain the correct biaxial hyperelastic parameters of silicones for accurate DEA modelling. In: SPIE Smart Structures and Materials, Nondestructive Evaluation and Health Monitoring, vol. 9056, p. 90560M (2014)

  37. Li, B., Zhang, J., Liu, L., Chen, H., Jia, S., Li, D.: Modeling of dielectric elastomer as electromechanical resonator. J. Appl. Phys. 116, 124509 (2014)

    Article  ADS  Google Scholar 

  38. Moreira, D.C., Nunes, L.C.S.: Comparison of simple and pure shear for an incompressible isotropic hyperelastic material under large deformation. Polym. Test. 32, 240–248 (2013)

    Article  Google Scholar 

  39. Ahmad, D., Patra, K.: Experimental and theoretical analysis of laterally pre-stretched pure shear deformation of dielectric elastomer. Polym. Test. 75, 291–297 (2019)

    Article  Google Scholar 

  40. Sakulkaew, K.: Tearing of Rubber, Ph.D. Thesis. Queen Mary University, London (2012)

  41. Marano, C., Boggio, M., Cazzoni, E., Rink, M.: Fracture phenomenology and toughness of filled natural rubber compounds via the pure shear test specimen. Rubber Chem. Technol 87, 501–515 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The work was partially supported by DST, Government of India under a research Project No. INT/SIN/P-03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karali Patra.

Additional information

Communicated by Michael Johlitz, Lucien Laiarinandrasana and Yann Marco.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, D., Patra, K. & Hossain, M. Experimental study and phenomenological modelling of flaw sensitivity of two polymers used as dielectric elastomers. Continuum Mech. Thermodyn. 32, 489–500 (2020). https://doi.org/10.1007/s00161-019-00817-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-019-00817-8

Keywords

Navigation