Skip to main content
Log in

Large-Eddy Simulations of Flow in the FDA Benchmark Nozzle Geometry to Predict Hemolysis

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Modeling of hemolysis due to fluid stresses faces significant methodological challenges, particularly in geometries with turbulence or complex flow patterns. It is currently unclear how existing phenomenological blood-damage models based on laminar viscous stresses can be implemented into turbulent computational fluid dynamics simulations. The aim of this work is to generalize the existing laminar models to turbulent flows based on first principles, and validate this generalization with existing experimental data.

Methods

A novel analytical and numerical framework for the simulation of flow-induced hemolysis based on the intermittency-corrected turbulent viscous shear stress (ICTVSS) is introduced. The proposed large-eddy simulation framework is able to seamlessly transition from laminar to turbulent conditions in a single flow domain by linking laminar shear stresses to dissipation of mechanical energy, accounting for intermittency in turbulent dissipation, and relying on existing power-law hemolysis models. Simulations are run to reproduce previously published hemolysis data with bovine blood in a benchmark geometry. Two sets of experimental data are relied upon to tune power-law parameters and justify that tuning. The first presents hemolysis measurements in a simple laminar flow, and the second is hemolysis in turbulent flow through the FDA benchmark nozzle. Validation is performed by simulation of blood injected into a turbulent jet of phosphate-buffered saline, with modifications made to account for the local concentration of blood.

Results

Hemolysis predictions are found to be very sensitive to power-law parameters in the turbulent case, though a set of parameters is presented that both matches the turbulent data and is well-justified by the laminar data. The model is shown to be able to predict the general behavior of hemolysis in a second turbulent case. Results suggest that wall shear may play a dominant role in most cases.

Conclusion

The ICTVSS framework of generalizing laminar power-law models to turbulent flows shows promise, but would benefit from further numerical validation and carefully designed experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Fig. 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Antiga, L., and D. A. Steinman. Rethinking turbulence in blood. Biorheology 46(2):77–81, 2009.

    Google Scholar 

  2. Blackshear, P. L., F. D. Dorman, and J. H. Steinbach. Some mechanical effects that inuence hemolysis. ASAIO J. 11(1):104–111, 1965.

    Google Scholar 

  3. Bludszuweit, C. Three-dimensional numerical prediction of stress loading of blood particles in a centrifugal pump. Artif. Organs 19(7):590–596, 1995.

    Google Scholar 

  4. Bluestein, M., and L. F. Mockros. Hemolytic effects of energy dissipation in owing blood. Med. Biol. Eng. 7(1):1–16, 1969.

    Google Scholar 

  5. Burton, G. C. Large-eddy simulation of passive-scalar mixing using multifractal subgridscale modeling. Ann Res Briefs 25:211–222, 2005.

    Google Scholar 

  6. Burton, G. C., and W. J. A. Dahm. Multifractal subgrid-scale modeling for large-eddy simulation. I. Model development and a priori testing. Phys. Fluids 17(7):075111, 2005.

    MathSciNet  MATH  Google Scholar 

  7. Cerutti, S., and C. Meneveau. Intermittency and relative scaling of subgrid-scale energy dissipation in isotropic turbulence. Phys. Fluids 10(4):928–937, 1998.

    MathSciNet  MATH  Google Scholar 

  8. Craven, B. A., K. I. Aycock, L. H. Herbertson, and R. A. Malinauskas. A cfd-based kriging surrogate modeling approach for predicting device-specific hemolysis power law coefficients in blood-contacting medical devices. Biomech. Model Mech. 30:1–26, 2019.

    Google Scholar 

  9. Cysyk, J., J. B. Clark, R. Newswanger, C. S. Jhun, J. Izer, H. Finicle, J. Reibson, B. Doxtater, W. Weiss, and G. Rosenberg. Chronic in vivo test of a right heart replacement blood pump for failed fontan circulation. ASAIO J. 65(6):593–600, 2019.

    Google Scholar 

  10. Davidson, P. A. Turbulence. Oxford: Oxford University Press, 2004.

    MATH  Google Scholar 

  11. Ding, J., S. Niu, Z. Chen, T. Zhang, B. P. Griffth, and Z. J. Wu. Shear-induced hemolysis: species differences. Artif. Organs 39(9):795–802, 2015.

    Google Scholar 

  12. Faghih, M. M., and M. K. Sharp. Extending the power-law hemolysis model to complex ows. J. Biomed. Eng. 138(12):124504, 2016.

    Google Scholar 

  13. Faghih, M. M., and M. K. Sharp. Characterization of erythrocyte membrane tension for hemolysis prediction in complex ows. Biomech. Model Mech. 17(3):827–842, 2018.

    Google Scholar 

  14. Faghih, M. M., and M. K. Sharp. On eulerian versus lagrangian models of mechanical blood damage and the linearized damage function. Artif. Organs 43(7):681–687, 2019.

    Google Scholar 

  15. Forstrom R. J. A new measure of erythrocyte membrane strength—the jet fragility test. University of Minnesota, Minnesota, 1970

    Google Scholar 

  16. Garon, A., and M. I. Farinas. Fast three-dimensional numerical hemolysis approximation. Artif Organs 28(11):1016–1025, 2004.

    Google Scholar 

  17. Giersiepen, M., L. J. Wurzinger, R. Opitz, and H. Reul. Estimation of shear stress-related blood damage in heart valve prostheses-in vitro comparison of 25 aortic valves. Int. J. Artif. Organs 13(5):300–306, 1990.

    Google Scholar 

  18. Goubergrits, L., J. Osman, R. Mevert, U. Kertzscher, W. K. Pothkow, and H. C. Hege. Turbulence in blood damage modeling. Int. J. Artif. Organs 39(4):160–165, 2016.

    Google Scholar 

  19. Grigioni, M., C. Daniele, U. Morbiducci, G. D’Avenio, G. Di Benedetto, and V. Barbaro. The power-law mathematical model for blood damage prediction: analytical developments and physical inconsistencies. Artif. Organs 28(5):467–475, 2004.

    Google Scholar 

  20. Grigioni, M., U. Morbiducci, G. D’Avenio, G. Di Benedetto, and C. Del Gaudio. A novel formulation for blood trauma prediction by a modified power-law mathematical model. Biomech. Model Mech. 4(4):249–260, 2005.

    Google Scholar 

  21. Hariharan, P., M. Giarra, V. Reddy, S. W. Day, K. B. Manning, S. Deutsch, S. F. C. Stewart, M. R. Myers, M. R. Berman, G. W. Burgreen, E. G. Paterson, and R. A. Malinauskas. Multilaboratory particle image velocimetry analysis of the fda benchmark nozzle model to support validation of computational uid dynamics simulations. J. Biomed. Eng. 133(4):041002, 2011.

    Google Scholar 

  22. Herbertson, S. E., L. H. Olia, A. Daly, C. P. Noatch, M. V. Smith, and Malinauskas R. A. Kameneva. Multilaboratory study of ow-induced hemolysis using the fda benchmark nozzle model. Artif. Organs 39(3):237–248, 2015.

    Google Scholar 

  23. Hund, S. J., J. F. Antaki, and M. Massoudi. On the representation of turbulent stresses for computing blood damage. Int. J. Eng. Sci. 48(11):1325–1331, 2010.

    MATH  Google Scholar 

  24. Jhun, C. S., M. A. Stauer, J. D. Reibson, E. E. Yeager, R. K. Newswanger, J. O. Taylor, K. B. Manning, W. J. Weiss, and G. Rosenberg. Determination of reynolds shear stress level for hemolysis. ASAIO J. 64(1):63–69, 2018.

    Google Scholar 

  25. Johnson, P. L., and C. Meneveau. Predicting viscous-range velocity gradient dynamics in largeeddy simulations of turbulence. J. Fluid Mech. 837:80–114, 2018.

    MathSciNet  MATH  Google Scholar 

  26. Jones, S. A. A relationship between reynolds stresses and viscous dissipation: implications to red cell damage. Ann. Biomed. Eng. 23(1):21–28, 1995.

    MathSciNet  Google Scholar 

  27. Kaul, C. M., and V. Raman. A posteriori analysis of numerical errors in subfilter scalar variance modeling for large eddy simulation. Phys. Fluids 23(3):035102, 2011.

    Google Scholar 

  28. Kolmogorov, A. N. The local structure of turbulence in incompressible viscous uid for very large reynolds numbers. Cr. Acad. Sci. URSS 30:301–305, 1941.

    MathSciNet  Google Scholar 

  29. Lesieur, M., and O. Metais. New trends in largeeddy simulations of turbulence. Ann. Rev. Fluid Mech. 28(1):45–82, 1996.

    MathSciNet  Google Scholar 

  30. Marom, G., and D. Bluestein. Lagrangian methods for blood damage estimation in cardiovascular devices-how numerical implementation affects the results. Expert Rev. Med. Dev. 13(2):113–122, 2016.

    Google Scholar 

  31. Meneveau, C., and J. Katz. Scale-invariance and turbulence models for large-eddy simulation. Ann. Rev. Fluid Mech. 32(1):1–32, 2000.

    MathSciNet  MATH  Google Scholar 

  32. Meneveau, C., and J. O’Neil. Scaling laws of the dissipation rate of turbulent subgrid-scale kinetic energy. Phys. Rev. E 49(4):2866, 1994.

    MathSciNet  Google Scholar 

  33. Morshed, K. N., D. Bark, Jr, M. Forleo, and L. P. Dasi. Theory to predict shear stress on cells in turbulent blood ow. PLoS ONE 9(8):e105357, 2014.

    Google Scholar 

  34. Nelkin, M. Multifractal scaling of velocity derivatives in turbulence. Phys. Rev. A 42(12):7226–7229, 1990.

    Google Scholar 

  35. Nicoud, F., and F. Ducros. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62(3):183–200, 1999.

    MATH  Google Scholar 

  36. Ozturk, M., E. O’Rear, and D. Papavassiliou. Reynolds stresses and hemolysis in turbulent ow examined by threshold analysis. Fluids 1(4):42, 2016.

    Google Scholar 

  37. Pope, S. B. Turbulent Flows. Cambridge: Cambridge University Press, 2000.

    MATH  Google Scholar 

  38. Quinlan, N. J., and P. N. Dooley. Models of owinduced loading on blood cells in laminar and turbulent ow, with application to cardiovascular device ow. Ann. Biomed. Eng. 35(8):1347–1356, 2007.

    Google Scholar 

  39. Ravichandran, A. K., J. Parker, E. Novak, S. M. Joseph, J. D. Schilling, G. A. Ewald, and S. Silvestry. Hemolysis in left ventricular assist device: a retrospective analysis of outcomes. J. Heart Lung Transpl. 33(1):44–50, 2014.

    Google Scholar 

  40. Roache, P. J. Perspective: a method for uniform reporting of grid refinement studies. J. Fluid Eng. 116(3):405–413, 1994.

    Google Scholar 

  41. Sallam, A. M., and N. H. C. Hwang. Human red blood cell hemolysis in a turbulent shear ow: contribution of reynolds shear stresses. Biorheology 21(6):783–797, 1984.

    Google Scholar 

  42. Stewart, S. F., P. Hariharan, E. G. Paterson, G. W. Burgreen, V. Reddy, S. W. Day, M. Giarra, K. B. Manning, S. Deutsch, M. R. Berman, et al. Results of fda’s first interlaboratory computational study of a nozzle with a sudden contraction and conical diffuser. Cardiovasc. Eng. Technol. 4(4):374–391, 2013.

    Google Scholar 

  43. Stewart, S. F. C., E. G. Paterson, G. W. Burgreen, P. Hariharan, M. Giarra, V. Reddy, S. W. Day, K. B. Manning, S. Deutsch, M. R. Berman, M. R. Myers, and R. A. Malinauskas. Assessment of cfd performance in simulations of an idealized medical device: results of fda’s first computational interlaboratory study. Cardiovasc. Eng. Technnol. 3(2):139–160, 2012.

    Google Scholar 

  44. Wu, P., S. GroHardt, F. Boehning, and P. L. Hsu. An energy-dissipation-based power-law formulation for estimating hemolysis. Biomech. Model Mech. 30:1–12, 2019.

    Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the National Heart, Lung and Blood Institute of the National Institutes of Health under Award Number R01HL136369. This work was supported by the Office of the Assistant Secretary of Defense for Health Affairs through the Congressionally Directed Medical Research Programs under Award No. (Grant No. W81XWH-16-1-0536).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keefe B. Manning.

Additional information

Associate Editor Amy L. Throckmorton oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tobin, N., Manning, K.B. Large-Eddy Simulations of Flow in the FDA Benchmark Nozzle Geometry to Predict Hemolysis. Cardiovasc Eng Tech 11, 254–267 (2020). https://doi.org/10.1007/s13239-020-00461-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-020-00461-3

Keywords

Navigation