Skip to main content
Log in

Transcatheter Mitral Valve Replacement: State of the Art

  • Review
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

The emergence of transcatheter aortic valve replacement (TAVR) has segued the development of transcatheter mitral valve (MV) repair devices. Transcatheter mitral valve repair has become a well-established alternative for patients with severe primary and secondary mitral regurgitation (MR) and with a perceived surgical risk. Transcatheter mitral valve replacement (TMVR) could become a more complete form of reduction of severe MR compared to MV repair devices, albeit with significant engineering challenges and all the risks associated with a bioprosthetic heart valve. The development of TMVR devices has become prominent while companies race to become the first commercially available system. Careful consideration of design challenges should be conducted by the developmental companies to ensure successful devices. Preclinical and clinical trials have shown promising results, showcasing the feasibility of total valve replacement utilizing transcatheter procedure techniques. Further development, testing, and trials need to be conducted before TMVR can become a sensible MR treatment. This review describes design challenges and considerations along with the state of the art, involving designs in both clinical and preclinical stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Abdelghani, M., et al. The Sino Medical AccuFit transcatheter mitral valve implantation system. EuroIntervention 11:W84–W85, 2015.

    Google Scholar 

  2. Abdul-Jawad Altisent, O., et al. Initial experience of transcatheter mitral valve replacement with a novel transcatheter mitral valve: procedural and 6-month follow-up results. J. Am. Coll. Cardiol. 66(9):1011–1019, 2015.

    Google Scholar 

  3. Affluent Medical SA. EPYGON. Affluent Medical SA [Online]. https://www.affluentmedical.com/epygon-2/. Accessed 21 Jun 2019.

  4. Ailawadi, G. Tendyne TMVR: attributes , challenges, clinical data. TVT, 2019 [Online]. https://www.tctmd.com/slide/tendyne-attributes-challenges-and-clinical-data-summit. Accessed 19 Jun 2019.

  5. Alharbi, Y., N. H. Lovell, J. Otton, D. Muller, A. Al Abed, and S. Dokos. Image-based fluid dynamics analysis of left ventricle outflow tract pressure gradient after deployment transcatheter mitral valve. In: Proceedings of Annual International Conference on IEEE Engineering in Medicine and Biology Society, EMBS, 2017, pp. 4223–4226.

  6. Angelini, A., S. Y. Ho, R. H. Anderson, M. J. Davies, and A. E. Becker. A histological study of the atrioventricular junction in hearts with normal and prolapsed leaflets of the mitral valve. BMJ Journals 59(6):712–716, 1988.

    Google Scholar 

  7. Atlantic Pediatric Device Consortium. MitraCath—a transcatheter heart valve replacement device. Atlantic Pediatric Device Consortium [Online]. http://atlanticpediatricdeviceconsortium.org/mitracath-transcatheter-heart-valve-replacement-device. Accessed 21 Jun 2019.

  8. B3C Newswire. Polares Medical Closes a $25M financing to enter clinical validation. B3C Newswire, 2018 [Online]. https://www.b3cnewswire.com/201807171807/polares-medical-closes-a-25m-financing-to-enter-clinical-validation.html. Accessed 20 Jun 2019.

  9. Bapat, V., F. Pirone, S. Kapetanakis, R. Rajani, and S. Niederer. Factors influencing left ventricular outflow tract obstruction following a mitral valve-in-valve or valve-in-ring procedure, part 1. Catheter. Cardiovasc. Interv. 86(4):747–760, 2015.

    Google Scholar 

  10. Bapat, V., et al. Transcatheter mitral valve implantation (TMVI) using the Edwards FORTIS device. EuroIntervention 10:U120–U128, 2014.

    Google Scholar 

  11. Bapat, V., et al. Early Experience With New Transcatheter Mitral Valve Replacement. J. Am. Coll. Cardiol. 71(1):12–21, 2018.

    Google Scholar 

  12. Barbanti, M., et al. Transcatheter Mitral Valve Implantation Using the HighLife System. JACC Cardiovasc. Interv. 10(16):1662–1670, 2017.

    Google Scholar 

  13. Bartus, K., B. Kapelak, A. Gackowski, and J. Gammie. Harpoon for degenerative MR : device and Updated Clinical Data. TCT 10000:10000, 2018.

    Google Scholar 

  14. Berdajs, D., G. Zünd, C. Camenisch, U. Schurr, M. I. Turina, and M. Genoni. Annulus fibrosus of the mitral valve: reality or myth. J. Card. Surg. 22(5):406–409, 2007.

    Google Scholar 

  15. Bertrand, P. B., E. Schwammenthal, R. A. Levine, and P. M. Vandervoort. Exercise Dynamics in Secondary Mitral Regurgitation: pathophysiology and Therapeutic Implications. Circulation 135(3):297–314, 2017.

    Google Scholar 

  16. Biasetti, J., F. Hussain, and T. Christian Gasser. Blood flow and coherent vortices in the normal and aneurysmatic aortas: a fluid dynamical approach to intraluminal thrombus formation. J. R. Soc. Interface 8(63):1449–1461, 2011.

    Google Scholar 

  17. Blanke, P., et al. Multimodality Imaging in the Context of Transcatheter Mitral Valve Replacement. JACC Cardiovasc. Imaging 8(10):1191–1208, 2015.

    Google Scholar 

  18. Blanke, P., et al. Predicting LVOT Obstruction in Transcatheter Mitral Valve Implantation: concept of the Neo-LVOT. JACC Cardiovasc. Imaging 10(4):482–485, 2017.

    MathSciNet  Google Scholar 

  19. Bloomberg. Company Overview of Endovalve, Inc. [Online]. https://www.bloomberg.com/research/stocks/private/snapshot.asp?privcapId=27694016. Accessed 18 Jun 2019.

  20. Bluestein, D., E. Rambod, and M. Gharib. Vortex Shedding as a mechanism for free emboli formation in mechanical heart valves. J. Biomech. Eng. 122(2):125–134, 2000.

    Google Scholar 

  21. Bothe, W., D. C. Miller, and T. Doenst. Sizing for mitral annuloplasty: where does science stop and Voodoo begin? Ann. Thorac. Surg. 95(4):1475–1483, 2013.

    Google Scholar 

  22. Buchbinder, M. MValve: design highlights and clinical update. TCT, 2016 [Online]. https://www.tctmd.com/slide/mvalve-design-highlights-and-clinical-update. Accessed 06 Jun 2019.

  23. Buchbinder, M. MValve: highlights and design update. TCT, 2017 [Online]. https://www.tctmd.com/slide/new-technology-update-mvalve. Accessed 06 Jun 2019.

  24. Business Wire. LivaNova Acquires Caisson Interventional, LLC. Business Wire, 2017 [Online]. https://www.businesswire.com/news/home/20170502006845/en/LivaNova-Acquires-Caisson-Interventional-LLC. Accessed 15 May 2019.

  25. Cairns, E. Livanova’s mitral valve steams ahead, but could be a distant third to market. Vantage, 2018 [Online]. https://www.evaluate.com/vantage/articles/news/snippets/livanovas-mitral-valve-steams-ahead-could-be-distant-third-market. Accessed 15 May 2019.

  26. Cardiovalve. Cardiovalve Transfemoral Valve Replacement System, 2019 [Online]. http://www.cardiovalve.com/. Accessed 30 Apr 2019.

  27. Cardiovascular News. TAVI company Direct Flow Medical closes after failing to secure funding. Cardiovascular News 1000:10000, 2017.

    Google Scholar 

  28. Cheung, A. Transcatheter mitral valve replacement. Indian J. Thorac. Cardiovasc. Surg. 34(May):144–150, 2018.

    Google Scholar 

  29. Cheung, A., et al. Short-term results of transapical transcatheter mitral valve implantation for mitral regurgitation. J. Am. Coll. Cardiol. 64(17):1814–1819, 2014.

    Google Scholar 

  30. Cheung, A., et al. Transcatheter mitral valve implantation with Tiara bioprosthesis. EuroIntervention 10:U115–U119, 2014.

    Google Scholar 

  31. ClinicalTrials.gov. AHEAD: European Feasibility Study of the Cardiovalve Transfemoral Mitral Valve System (AHEAD). U.S. National Library of Medicine, 2019 [Online]. https://clinicaltrials.gov/ct2/show/NCT03339115. Accessed 30 Apr 2019.

  32. ClinicalTrials.gov. Cardiovascular outcomes assessment of the MitraClip percutaneous therapy for heart failure patients with functional mitral regurgitation (The COAPT trial) (COAPT). U.S. National Library of Medicine, 2018 [Online]. https://clinicaltrials.gov/ct2/show/NCT01626079. Accessed 29 Jan 2020.

  33. ClinicalTrials.gov. Multicentre study of percutaneous mitral valve repair MitraClip Device in Patients With Severe Secondary Mitral Regurgitation (MITRA-FR). U.S. National Library of Medicine, 2018 [Online]. https://clinicaltrials.gov/ct2/show/NCT01920698. Accessed 29 Jan 2020.

  34. ClinicalTrials.gov. Caisson Transcatheter Mitral Valve Replacement (TMVR) System Early Feasibility Study (PRELUDE). U.S. National Library of Medicine, 2019 [Online]. https://clinicaltrials.gov/ct2/show/NCT02768402. Accessed: 15 May 2019.

  35. ClinicalTrials.gov. Caisson Transcatheter Mitral Valve Replacement (TMVR) System Early Feasibility Study (PRELUDE). U.S. National Library of Medicine, 2019 [Online]. https://clinicaltrials.gov/ct2/show/NCT02768402. Accessed 15 May 2019.

  36. ClinicalTrials.gov. Cardiovalve Transfemoral Mitral Valve System (AHEAD),” U.S. National Library of Medicine, 2019 [Online]. https://clinicaltrials.gov/ct2/show/NCT03813524. Accessed 30 Apr 2019.

  37. ClinicalTrials.gov. Clinical trial to evaluate the safety of using the Tendyne Mitral valve system for the treatment of symptomatic mitral regurgitation (SUMMIT). U.S. National Library of Medicine, 2019 [Online]. https://clinicaltrials.gov/ct2/show/NCT03433274. Accessed 03 May 2019.

  38. ClinicalTrials.gov. Edwards EVOQUE TMVR Early Feasibility Study. U.S. National Library of Medicine, 2019 [Online]. https://clinicaltrials.gov/ct2/show/NCT02718001. Accessed 28 Apr 2019.

  39. ClinicalTrials.gov. HighLife™ Transcatheter mitral valve replacement system study. U.S. National Library of Medicine, 2019 [Online]. https://clinicaltrials.gov/ct2/show/NCT02974881. Accessed 15 May 2019]

  40. ClinicalTrials.gov. Tiara Transcatheter Mitral Valve Replacement Study (TIARA-II). U.S. National Library of Medicine, 2019 [Online]. https://www.clinicaltrials.gov/ct2/show/NCT03039855. Accessed 28 Apr 2019.

  41. ClinicalTrials.gov. Transcatheter Mitral Valve Replacement With the Medtronic Intrepid™ TMVR system in patients with severe symptomatic mitral regurgitation (APOLLO). U.S. National Library of Medicine, 2019 [Online]. https://clinicaltrials.gov/ct2/show/NCT03242642. Accessed 14 May 2019.

  42. Coffey, S., B. J. Cairns, and B. Iung. The modern epidemiology of heart valve disease. Heart 102(1):75–85, 2016.

    Google Scholar 

  43. Colli, A., and P. Fects. MEND: a versatile valve technology. TCT, 2018 [Online]. https://www.tctmd.com/slide/amend-ring-annuloplasty-system-device-procedure-and-updated-outcomes. Accessed 19 Jun 2019.

  44. Corbett, S. C., A. Ajdari, A. U. Coskun, and H. Nayeb-Hashemi. Effect of pulsatile blood flow on thrombosis potential with a step wall transition. ASAIO J. 56(4):290–295, 2010.

    Google Scholar 

  45. De Backer, O., et al. Percutaneous transcatheter mitral valve replacement: an overview of devices in preclinical and early clinical evaluation. Circ. Cardiovasc. Interv. 7(3):400–409, 2014.

    Google Scholar 

  46. Denti, P. SATURN PROJECT: a solid approach to MV transcatheter replacement. Mitral Valve Meeting, 2018 [Online]. https://www.innovheart.com/wp-content/uploads/2018/02/Saturn-Project-A-solid-approach-to-MV-transcatheter-replacement-PDenti-20180226.pdf. Accessed 14 Jun 2019.

  47. Dr. Wang’s Clinic. The Mitracath System: transcatheter mitral valve replacement system. Dr. Wang’s Clinic, 2012 [Online]. http://wangyulin.weebly.com/blog/category/news. Accessed 21 Jun 2019.

  48. Edwards Lifescience. Edwards pauses enrollment in early stage mitral program. Edwards Lifescience, 2015 [Online]. https://www.edwards.com/ns20150519A. Accessed: 08 Jun 2019.

  49. Fallon, A. M., L. P. Dasi, U. M. Marzec, S. R. Hanson, and A. P. Yoganathan. Procoagulant properties of flow fields in stenotic and expansive orifices. Ann. Biomed. Eng. 36(1):1–13, 2008.

    Google Scholar 

  50. Fam, N. P. PASCAL system for transcatheter mitral leaflet repair: initial experience and outcomes University of Toronto. TCT, 2018 [Online]. https://www.tctmd.com/slide/pascal-system-transcatheter-mitral-leaflet-repair-initial-experience-and-outcomes. Accessed 08 Jun 2019.

  51. Fattouch, K. Neochord for degenerative MR: device, data synthesis, and pivotal clinical trial progress. TCT, 2018 [Online]. https://www.tctmd.com/slide/neochord-degenerative-mr-device-data-synthesis-and-pivotal-clinical-trial-progress. Accessed 08 Jun 2019.

  52. FDA. FDA approves new indication for valve repair device to treat certain heart failure patients with mitral regurgitation. FDA, 2019 [Online]. https://www.fda.gov/news-events/press-announcements/fda-approves-new-indication-valve-repair-device-treat-certain-heart-failure-patients-mitral. Accessed 06 Jun 2019.

  53. Feher, J. Chapter 5.4: the heart as a pump. In Quantitative Human Physiology, Amsterdam: Elsevier, 2012, pp. 446–454.

  54. Fitzgerald, P. J. Emerging and investigational devices for mitral regurgitation; MitrAssist TMVR. TCT, 2014 [Online]. https://www.tctmd.com/slide/mitrassist-tmvr. Accessed 19 Jun 2019.

  55. Flynn, C. D., A. R. Wilson-Smith, and T. D. Yan. Novel mitral valve technologies—transcatheter mitral valve implantation: a systematic review. Ann. Cardiothorac. Surg. 7(6):716–723, 2018.

    Google Scholar 

  56. Foster, G. P., A. K. Dunn, S. Abraham, N. Ahmadi, and G. Sarraf. Accurate measurement of mitral annular dimensions by echocardiography: importance of correctly aligned imaging planes and anatomic landmarks. J. Am. Soc. Echocardiogr. 22(5):458–463, 2009.

    Google Scholar 

  57. Fröhlich, G. M., et al. Comparative survival after transapical, direct aortic, and subclavian transcatheter aortic valve implantation (data from the UK TAVI Registry). Am. J. Cardiol. 116(10):1555–1559, 2015.

    Google Scholar 

  58. Généreux, P. The AltaValve™: attributes, challenges, and future programs. The Structural Heart Disease Summit, 2018 [Online]. https://www.tctmd.com/slide/altavalve-attributes-challenges-and-future-programs. Accessed 20 Jun 2019.

  59. Gillespie, M. J., et al. Sutureless mitral valve replacement: initial steps toward a percutaneous procedure. Ann. Thorac. Surg. 96(2):670–674, 2013.

    Google Scholar 

  60. Goel, S. S., et al. Prevalence and outcomes of unoperated patients with severe symptomatic mitral regurgitation and heart failure: comprehensive analysis to determine the potential role of mitraclip for this unmet need. J. Am. Coll. Cardiol. 63(2):185–186, 2014.

    Google Scholar 

  61. Gorman Cardiovascular Research. Device & Startup Companies. Gorman Cardiovascular Research Group [Online]. http://www.gormanresearch.com/device-startup/. Accessed 18 Jun 2019.

  62. Gorman, J. H., R. C. Gorman, and M. J. Gillespie. Valve Prosthesis, US Patent 9,289,291, 2017.

  63. Granada, J. F. Cephea TMVR system: device description , clinical appraisal and development plans. TCT, 2017 [Online]. https://www.tctmd.com/slide/emerging-tmvr-1-cephea-device-description-critical-appraisal-and-development-plans. Accessed 14 Jun 2019.

  64. Grayburn, P. A., A. Sannino, and M. Packer. Proportionate and disproportionate functional mitral regurgitation: a new conceptual framework that reconciles the results of the MITRA-FR and COAPT Trials. JACC Cardiovasc. Imaging 12(2):353–362, 2019.

    Google Scholar 

  65. Greenbaum, A. B., et al. Long or redundant leaflet complicating transcatheter mitral valve replacement: case vignettes that advocate for removal or reduction of the anterior mitral leaflet. Catheter. Cardiovasc. Interv. 92(3):627–632, 2018.

    Google Scholar 

  66. Grigioni, M., U. Morbiducci, G. D’Avenio, G. Di Benedetto, and C. Del Gaudio. A novel formulation for blood trauma prediction by a modified power-law mathematical model. Biomech. Model. Mechanobiol. 4(4):249–260, 2005.

    Google Scholar 

  67. Guerrero, M., et al. Transcatheter mitral valve replacement in native mitral valve disease with severe mitral annular calcification: results From the First Multicenter Global Registry. JACC Cardiovasc. Interv. 9(13):1361–1371, 2016.

    Google Scholar 

  68. Hahn, R. T. NAVIGATE transcatheter tricuspid valve replacement… Early findings—technology and clinical updates. TCT, 2018 [Online]. https://www.tctmd.com/slide/navigate-transcatheter-tricuspid-valve-replacement-early-findings-technology-and-clinical. Accessed 06 Jun 2019.

  69. Hansson, N. C., et al. Transcatheter aortic valve thrombosis: incidence, predisposing factors, and clinical implications. J. Am. Coll. Cardiol. 68(19):2059–2069, 2016.

    Google Scholar 

  70. Hashimoto, S., et al. The effect of pulsatile shear flow on thrombus formation and hemolysis. In Annual International Conference of the IEEE Engineering in Medicine and Biology—Proceedings, vol. 4, 2000, pp. 2461–2462.

  71. Herrmann, H. C. Transseptal TMVR: Edwards EVOQUE. TVT, 2019 [Online]. https://www.tctmd.com/slide/evoque-attributes-challenges-and-early-clinical-data. Accessed 19 Jun 2019.

  72. Hong, T., and C. N. Kim. A numerical analysis of the blood flow around the Bileaflet Mechanical Heart Valves with different rotational implantation angles. J. Hydrodyn. 23(5):607–614, 2011.

    Google Scholar 

  73. iBridge Network. MitraCath: Transcatheter Mitral Valve Replacement System. ibridge network, 2012 [Online]. https://www.ibridgenetwork.org/#!/profiles/4005658529748/innovations/274/. Accessed 21 Jun 2019.

  74. Iyer, R., A. Chalekian, R. Lane, M. Evans, S. Yi, and J. Morris. Transcatheter mitral valve replacement: functional requirements for device design, bench-top, and pre-clinical evaluation. Cardiovasc. Eng. Technol. 9(3):301–338, 2018.

    Google Scholar 

  75. Jolobe, O. Recognition of the distinction between primary and secondary mitral regurgitation is also important. QJM Int. J. Med. 109(10):699, 2016.

    Google Scholar 

  76. Khalighi, A. H., et al. Mitral valve chordae tendineae: topological and geometrical characterization. Ann. Biomed. Eng. 45(2):378–393, 2017.

    MathSciNet  Google Scholar 

  77. Khan, J. M., U. Trivedi, A. Gomes, R. J. Lederman, and D. Hildick-Smith. ‘Rescue’ LAMPOON to treat transcatheter mitral valve replacement-associated left ventricular outflow tract obstruction. JACC Cardiovasc. Interv. 12(13):1283–1284, 2019.

    Google Scholar 

  78. Khan, J. M., et al. LAMPOON to facilitate tendyne transcatheter mitral valve replacement. JACC Cardiovasc. Interv. 11(19):2014–2017, 2018.

    Google Scholar 

  79. Khan, J. M., et al. Anterior leaflet laceration to prevent ventricular outflow tract obstruction during transcatheter mitral valve replacement. J. Am. Coll. Cardiol. 73(20):2521–2534, 2019.

    Google Scholar 

  80. Kodali, S. Hemi-valve for mitral regurgitation (sutra): design concept and pre-clinical observations. TCT, 2018 [Online]. https://www.tctmd.com/slide/hemi-valve-mitral-regurgitation-sutra-design-concept-and-pre-clinical-observations. Accessed 19 Jun 2019.

  81. Kodali, S. Emerging mitral interventional technologies: Sutra Valve. TVT, 2019 [Online]. https://www.tctmd.com/slide/sutra. Accessed 29 Jun 2019.

  82. Krishnan, S., H. S. Udaykumar, J. S. Marshall, and K. B. Chandran. Two-dimensional dynamic simulation of platelet activation during mechanical heart valve closure. Ann. Biomed. Eng. 34(10):1519–1534, 2006.

    Google Scholar 

  83. Latib, A. Direct flow medical solutions for mitral valve replacement. CRT, 2016 [Online]. First-in-human implantation of a direct flow medical valve in a radiolucent mitral annuloplasty ring. Accessed 21 Jun 2019.

  84. Latib, A., et al. First-in-human implantation of a direct flow medical valve in a radiolucent mitral annuloplasty ring. JACC Cardiovasc. Interv. 8(6):e105–e108, 2015.

    Google Scholar 

  85. Leon, M. B. INTREPID: attributes, challenges, and clinical data (APOLLO). TVT, 2019 [Online]. https://www.tctmd.com/slide/intrepid-attributes-challenges-and-clinical-data-apollo. Accessed: 19 Jun 2019.

  86. Levine, R. A., M. O. Triulzi, P. Harrigan, and A. E. Weyman. The relationship of mitral annular shape to the diagnosis of mitral valve prolapse. Circulation 75(4):756–767, 1987.

    Google Scholar 

  87. Loger, K., et al. Transcatheter mitral valve implantation: supra-annular and subvalvular fixation techniques. Eur. J. Cardiothorac. Surg. 54(6):1013–1021, 2018.

    Google Scholar 

  88. Lutter, G., et al. First-in-human off-pump transcatheter mitral valve replacement. JACC Cardiovasc. Interv. 7(9):1077–1078, 2014.

    Google Scholar 

  89. Maisano, F. Cardiovalve: device attributes, implant procedure and early results. TCT, 2018 [Online]. https://www.tctmd.com/slide/cardiovalve-device-attributes-implant-procedure-and-early-results. Accessed 30 Apr 2019.

  90. Maisano, F. Cardiovalve: device attributes, implant procedure and early results. TVT, 2019 [Online]. https://www.tctmd.com/slide/cardiovalve-device-attributes-implant-procedure-and-early-results. Accessed 19 Aug 2019.

  91. Maisano, F., et al. The future of transcatheter mitral valve interventions: competitive or complementary role of repair vs. Replacement? Eur. Heart J. 36(26):1651–1659, 2015.

    Google Scholar 

  92. Maron, M. S., et al. Effect of left ventricular outflow tract obstruction on left atrial mechanics in hypertrophic cardiomyopathy. N. Engl. J. Med. 2003. https://doi.org/10.1155/2015/481245.

    Article  Google Scholar 

  93. McCarthy, K. P., L. Ring, and B. S. Rana. Anatomy of the mitral valve: understanding the mitral valve complex in mitral regurgitation. Eur. J. Echocardiogr. 11(10):3–9, 2010.

    Google Scholar 

  94. Meerkin, D. The corona mitral valve replacement system: an innovative Modular solution to mitral regurgitation. TVT, 2017 [Online]. https://www.tctmd.com/slide/emerging-tmvr-4-corona-valve-amend-ring-device-description-critical-appraisal-and-development. Accessed 19 Jun 2019.

  95. Meerkin, D. The corona mitral valve replacement system: an innovative modular solution to mitral regurgitation. TCT, 2017 [Online]. https://www.tctmd.com/slide/emerging-tmvr-4-corona-valve-amend-ring-device-description-critical-appraisal-and-development. Accessed 19 Jun 2019.

  96. Meerkin, D. MEND: technology and clinical updates. The Structural Heart Disease Summit, 2018 [Online]. https://www.tctmd.com/slide/valcare-amend-progressing-technology-and-clinical-updates. Accessed 19 Jun 2019.

  97. Meerkin, D. AMEND: technology and clinical updates. TVT, 2019 [Online]. https://www.tctmd.com/slide/valcare-amend-technology-and-clinical-updates. Accessed 19 Jun 2019.

  98. Micro Interventional Devices Inc. Permavalve—mitral valve replacement. Micro Interventional Devices, Inc. [Online]. https://www.microinterventional.com/permavalve. Accessed 18 Jun 2019.

  99. Min Yun, B., C. K. Aidun, and A. P. Yoganathan. Blood damage through a bileaflet mechanical heart valve: a quantitative computational study using a multiscale suspension flow solver. J. Biomech. Eng. 136(10):101009, 2014.

    Google Scholar 

  100. Mirabel, M., et al. What are the characteristics of patients with severe, symptomatic, mitral regurgitation who are denied surgery? Eur. Heart J. 28(11):1358–1365, 2007.

    Google Scholar 

  101. Misfeld, M., and H. H. Sievers. Heart valve macro- and microstructure. Philos. Trans. R. Soc. B Biol. Sci. 362(1484):1421–1436, 2007.

    Google Scholar 

  102. MitrAssist. The Product. MitrAssist [Online]. http://mitrassist.com/product.asp. Accessed 18 Jun 2019.

  103. Modine, T. The Cephea TMVR: device attributes and implant procedure. TVT, 2019 [Online]. https://www.tctmd.com/slide/cephea-attributes-challenges-and-future-directions. Accessed 19 Jun 2019.

  104. Mohammadi, H., D. Goode, G. Fradet, and K. Mequanint. Proposed percutaneous aortic valve prosthesis made of cryogel. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 233(5):515–524, 2019.

    Google Scholar 

  105. Muller , D. New technology update: Cephea TMVR system. TVT, 2017 [Online]. https://www.tctmd.com/slide/new-technology-update-cephea. Accessed 14 Jun 2019.

  106. Naim, W. N. W. A., et al. Prediction of thrombus formation using vortical structures presentation in Stanford type B aortic dissection: a preliminary study using CFD approach. Appl. Math. Model. 40(4):3115–3127, 2015.

    MATH  Google Scholar 

  107. Navigate Cardiac Structures Incorporated. First Navi patient at 8 months shows excellent mitral valve function and has returned to work, 2016 [Online]. https://www.navigatecsi.com/announcement/first-navi-patient-at-8-months-shows-excellent-mitral-valve-function-and-has-returned-to-work/. Accessed 03 Jun 2019.

  108. Navigate Cardiac Structures Incorporated. NaviGate Cardiac Structures Inc. (‘NCSI’) reports ‘excellent valvular function’ at 1-year follow-up of first patient to receive GATE tricuspid valved stent via transjugular access, 2018 [Online]. https://www.navigatecsi.com/press-release/navigate-cardiac-structures-inc-ncsi-reports-excellent-valvular-function-at-1-year-follow-up-of-first-patient-to-receive-gate-tricuspid-valved-stent-via/. Accessed 03 Jun 2019.

  109. Navigate Cardiac Structures Incorporated. Strategy for the AtrioVentricular Valved Stent, 2019 [Online]. https://www.navigatecsi.com/technology/. Accessed 03 Jun 2019.

  110. Nietlispach, F. Accufit: The Sinomed solution for percutaneous mitral valve replacement. TCT, 2016.

  111. Nkomo, V. T., J. M. Gardin, T. N. Skelton, J. S. Gottdiener, C. G. Scott, and M. Enriquez-Sarano. Burden of valvular heart diseases: a population-based study. Lancet 368(9540):1005–1011, 2006.

    Google Scholar 

  112. Paradis, J. M., M. Del Trigo, R. Puri, and J. Rodés-Cabau. Transcatheter valve-in-valve and valve-in-ring for treating aortic and mitral surgical prosthetic dysfunction. J. Am. Coll. Cardiol. 66(18):2019–2037, 2015.

    Google Scholar 

  113. Peruzzo, P., F. M. Susin, A. Colli, and G. Burriesci. In vitro assessment of pacing as therapy for aortic regurgitation. Open Hear. 6(1):e000976, 2019.

    Google Scholar 

  114. Piazza, N. Transcatheter mitral valve replacement. TCT, 2018 [Online]. https://www.tctmd.com/slide/established-tmvr-5-highlife-device-description-strengths-and-weaknesses-and-updated-summary. Accessed 15 May 2019.

  115. Piazza, N. Transcatheter mitral valve replacement: HighLife. TVT, 2019 [Online]. https://www.tctmd.com/slide/highlife-attributes-challenges-and-clinical-data. Accessed 19 Jun 2019.

  116. Pibarot, P., and J. G. Dumesnil. Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation 119(7):1034–1048, 2009.

    Google Scholar 

  117. Pierce, E. L., V. Sadri, B. Ncho, K. Kohli, S. Shah, and A. P. Yoganathan. Novel in vitro test systems and insights for transcatheter mitral valve design, part i: paravalvular leakage. Ann. Biomed. Eng. 47(2):381–391, 2019.

    Google Scholar 

  118. Pierce, E. L., et al. Novel In Vitro test systems and insights for transcatheter mitral valve design, part II: radial expansion forces. Ann. Biomed. Eng. 47(2):392–402, 2019.

    Google Scholar 

  119. Praz, F. Posterior leaflet augmentation & restoration. TVT, 2019 [Online]. https://www.tctmd.com/slide/polares. Accessed: 20 Jun 2019.

  120. Preston-Maher, G. L., R. Torii, and G. Burriesci. A technical review of minimally invasive mitral valve replacements. Cardiovasc. Eng. Technol. 6(2):174–184, 2015.

    Google Scholar 

  121. Quarto, C., et al. Transcatheter mitral valve implantation 30-day outcome of first-in-man experience with an apically tethered device. Innov. Technol. Tech. Cardiothorac. Vasc. Surg. 11(3):174–178, 2016.

    Google Scholar 

  122. Regueiro, A., J. F. Granada, F. Dagenais, and J. Rodés-Cabau. Transcatheter mitral valve replacement: insights from early clinical experience and future challenges. J. Am. Coll. Cardiol. 69(17):2175–2192, 2017.

    Google Scholar 

  123. Regueiro, A., et al. 2-Year outcomes after transcatheter mitral valve replacement. JACC Cardiovasc. Interv. 10(16):1671–1678, 2017.

    Google Scholar 

  124. Ribeiro, H. B., et al. Predictors and impact of myocardial injury after transcatheter aortic valve replacement a multicenter registry. J. Am. Coll. Cardiol. 66(19):2075–2088, 2015.

    Google Scholar 

  125. Rodés-Cabau, J. AltaValve: attributes, Challenges and Future Programs. TVT 10000:10000, 2019.

    Google Scholar 

  126. Rodés-Cabau, J. 4C Medical’s AltaValve: the first-in-human experience. TCT, 2018 [Online]. https://www.tctmd.com/slide/4c-medicals-altavalve-first-human-experience. Accessed 20 Jun 2019.

  127. Rodriguez-Gabella, T., P. Voisine, R. Puri, P. Pibarot, and J. Rodés-Cabau. Aortic bioprosthetic valve durability: incidence, mechanisms, predictors, and management of surgical and transcatheter valve degeneration. J. Am. Coll. Cardiol. 70(8):1013–1028, 2017.

    Google Scholar 

  128. Rogers, J. H. Polares: technology and FIM update. TVT, 2019 [Online]. https://www.tctmd.com/slide/polares-technology-and-fim-update. Accessed 20 Jun 2019.

  129. Rosendal, C., M. D. Hien, T. Bruckner, E. O. Martin, G. Szabo, and H. Rauch. Left ventricular outflow tract: intraoperative measurement and changes caused by mitral valve surgery. J. Am. Soc. Echocardiogr. 25(2):166–172, 2012.

    Google Scholar 

  130. Schofer, J. Direct flow medical TAVR system. TCT, 2012 [Online]. https://www.tctmd.com/slide/direct-flow-medical-tavr-system. Accessed 21 Jun 2019.

  131. Scorsin, M., and Pasquino, E. Pioneering physiological mitral prosthesis designed to treat mitral regurgitation and left ventricular function: Results of preclinical transcatheter implantation. TCT, 2018 [Online]. https://www.tctmd.com/slide/pioneering-physiological-mitral-prosthesis-designed-treat-mitral-regurgitation-and-left. Accessed 21 Jun 2019.

  132. Serruys, P. W. Accufit TMVR transapical mitral valve replacement system: a technical update. EuroPCR, 2016 [Online]. https://www.pcronline.com/Cases-resources-images/Resources/Course-videos-slides/2016/Mitral-and-tricuspid. Accessed 28 May 2019.

  133. Serruys, P., et al. TCT-637 The transapical AccuFit bioprosthesis for transcatheter mitral valve replacement. J. Am. Coll. Cardiol. 68(18):B259, 2016.

    Google Scholar 

  134. Sheriff, J., J. S. Soares, M. Xenos, J. Jesty, and D. Bluestein. Evaluation of shear-induced platelet activation models under constant and dynamic shear stress loading conditions relevant to devices. Ann. Biomed. Eng. 41(6):1279–1296, 2013.

    Google Scholar 

  135. Simon, H. A., L. Ge, F. Sotiropoulos, and A. P. Yoganathan. Numerical investigation of the performance of three hinge designs of bileaflet mechanical heart valves. Ann. Biomed. Eng. 38(11):3295–3310, 2010.

    Google Scholar 

  136. Sodhi, N., and A. Zajarias. Status of transcatheter mitral valve replacement: an emerging frontier with unique anatomical, technical, and clinical challenges. Card. Interv. Today 12(4):50–53, 2018.

    Google Scholar 

  137. Sondergaard, L., et al. Transcatheter mitral valve implantation via transapical approach: an early experience. Eur. J. Cardiothoracic Surg. 48(6):873–878, 2015.

    Google Scholar 

  138. Søndergaard, L., et al. First-in-human case of transfemoral CardiAQ mitral valve implantation. Images Case Rep. Interv. Cardiol. 8(7):e002135, 2015.

    Google Scholar 

  139. Sorajja, P. MitraClip in the U.S.: latest TVT registry results. TCT, 2018 [Online]. https://www.tctmd.com/slide/mitraclip-us-latest-tvt-registry-results. Accessed 06 Jun 2019.

  140. Sorajja, P., et al. Initial feasibility study of a new transcatheter mitral prosthesis: the first 100 patients. J. Am. Coll. Cardiol. 73(11):1250–1260, 2019.

    Google Scholar 

  141. Steven, B. Caisson Transeptal Valve. TVT, 2019 [Online]. https://www.tctmd.com/slide/caisson-program-attributes-challenges-and-early-clinical-data. Accessed 19 Jun 2019.

  142. Stone, G. W., et al. Transcatheter mitral-valve repair in patients with heart failure. N. Engl. J. Med. 379(24):2307–2318, 2018.

    Google Scholar 

  143. Sun, W. Sutra: technology and development plan. TVT, 2019 [Online]. https://www.tctmd.com/slide/sutra-technology-and-development-plan. Accessed 19 Jun 2019.

  144. Tamagawa, M., H. Kaneda, M. Hiramoto, and S. Nagahama. Simulation of thrombus formation in shear flows using lattice boltzmann method. Artif. Organs 33(8):604–610, 2009.

    Google Scholar 

  145. The Press Democrat. Direct Flow Medical in Santa Rosa shuts down, 250 people laid off. The Press Democrat, 2016 [Online]. https://www.pressdemocrat.com/business/6461514-181/direct-flow-medical-shuts-down?artslide=1&sba=AAS. Accessed 21 Jun 2019.

  146. Thériault-Lauzier, P., et al. Fluoroscopic anatomy of left-sided heart structures for transcatheter interventions: insight from multislice computed tomography. JACC Cardiovasc. Interv. 7(9):947–957, 2014.

    Google Scholar 

  147. Thourani, V. H. Cardioband direct annuloplasty for functional MR: device , data synthesis, and pivotal clinical trial progress. TCT, 2018 [Online]. https://www.tctmd.com/sites/default/files/efs/public/2018-09/6CF71612-A535-49CB-A504-EA71627C250F.pdf. Accessed 08 Jun 2019.

  148. Ticar, J. Mitral butterfly: evaluation of a novel device in porcine and human hearts. TVT, 2019 [Online]. https://www.tctmd.com/slide/mitral-butterfly-evaluation-novel-device-porcine-and-human-hearts. Accessed 10 Sep 2019.

  149. Urena, M., et al. Late cardiac death in patients undergoing transcatheter aortic valve replacement: incidence and predictors of advanced heart failure and sudden cardiac death. J. Am. Coll. Cardiol. 65(5):437–448, 2015.

    Google Scholar 

  150. Von Bardeleben, R. S. Carillon indirect annuloplasty for functional MR: device, data synthesis, clinical trial progress. TCT, 2018 [Online]. https://www.tctmd.com/slide/carillon-indirect-annuloplasty-functional-mr-device-data-synthesis-and-pivotal-clinical-trial. Accessed 08 Jun 2019.

  151. Wang, D. D., et al. Validating a prediction modeling tool for left ventricular outflow tract (LVOT) obstruction after transcatheter mitral valve replacement (TMVR). Catheter. Cardiovasc. Interv. 92(2):379–387, 2018.

    Google Scholar 

  152. Webb, J. Transcatheter mitral valve replacement with the SAPIEN M3. TVT, 2019 [Online]. https://www.tctmd.com/slide/m3-attributes-challenges-and-early-clinical-data. Accessed 19 Jun 2019.

  153. Webb, J. G., et al. Percutaneous transcatheter mitral valve replacement: first-in-human experience with a new transseptal system. J. Am. Coll. Cardiol. 73(11):1239–1246, 2019.

    Google Scholar 

  154. Wermers, J., and R. Torguson. SAPIEN M3 System’s early results are ‘encouraging’ for treatment of mitral regurgitation, 2018 [Online]. http://www.crtonline.org/news-detail/sapien-m3-system-s-early-results-are-encouraging-t. Accessed 29 Apr 2019.

  155. Williams, M. Transfemoral TMVR: Caisson transcatheter mitral valve replacement. TCT, 2018 [Online]. https://www.tctmd.com/slide/caisson-device-attributes-implant-procedure-and-early-results. Accessed 15 May 2019.

  156. Wu, Q., L. Zhang, and R. Zhu. Obstruction of Left ventricular outflow tract after mechanical mitral valve replacement. Ann. Thorac. Surg. 85(5):1789–1791, 2008.

    Google Scholar 

  157. Xenos, M., et al. Device Thrombogenicity Emulator (DTE)—design optimization methodology for cardiovascular devices: a study in two bileaflet MHV designs. J. Biomech. 43(12):2400–2409, 2010.

    Google Scholar 

  158. Yoganathan, A. P. Cardiac valve prosthesis. In: The Biomedical Engineering Handbook2nd, edited by J. D. Bronzino. Boca Raton: CRC Press, 2000.

    Google Scholar 

  159. Yoon, S. H., et al. Predictors of left ventricular outflow tract obstruction after transcatheter mitral valve replacement. JACC Cardiovasc. Interv. 12(2):182–193, 2019.

    MathSciNet  Google Scholar 

  160. Zovighian, B. J. Transcatheter mitral & tricuspid therapies. Edwards Lifesciences, 2018 [Online]. Available: http://ir.edwards.com/static-files/76ed84fa-adc1-4c22-aa30-cd405801e1b9. Accessed 29 Apr 2019.

Download references

Acknowledgments

The authors acknowledge the University of British Columbia and NSERC (Discovery Grant), Mitacs Accelerate Program and Angeleno Medical Inc for financial support.

Conflict of interest

None declared.

Funding

In partnership with Angeleno Medical Ltd. University of British Columbia and NSERC Discovery Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Mohammadi.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goode, D., Dhaliwal, R. & Mohammadi, H. Transcatheter Mitral Valve Replacement: State of the Art. Cardiovasc Eng Tech 11, 229–253 (2020). https://doi.org/10.1007/s13239-020-00460-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-020-00460-4

Keywords

Navigation