Skip to main content
Log in

Rotational hydrogen thermometry by hybrid fs/ps coherent anti-Stokes Raman scattering in the plume of a burning metalized propellant

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We employed a hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) instrument to probe rotational temperatures of molecular hydrogen in the multiphase reaction zone of an aluminized ammonium perchlorate (AP) propellant flame. Significant concentrations of hydrogen, present in the plume due to the decomposition of the propellant binder material and subsequent reactions with AP oxidizers, allowed for single-shot thermometry at the laser repetition rate of 1 kHz. A time-asymmetric picosecond probe pulse time-gated the impulsively generated Raman coherence at a delay of 2.66 ps from the pump and Stokes pulses, before any appreciable coherence dephasing occurred in the atmospheric pressure flames and mitigating uncertainties in the Raman transition frequencies and dephasing processes. Measurements in near-adiabatic H2-air flames at equivalence ratios of \(\phi\) = 1–1.8 demonstrated measurement accuracy to near 5% of equilibrium predictions with a precision approaching 3% for high signal-to-noise ratio spectra. Introduction of a time-delayed probe pulse provided Raman-resonant spectra from the plumes of burning propellants with ample signal above broadband background emission, which were fit to libraries of synthetic spectra to infer the gas rotational temperature 0–15 mm from the burning surface. The mean fitted temperature of 2494 K from three propellant burns compares favorably to other measurements of gas and particle temperatures in similar propellant studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E.H. Richardson, J.M. Blackwood, M.J. Hays, T. Skinner, Solid rocket launch vehicle explosion environments, NASA Technical Report M15-4253 (2014)

  2. M.W. Beckstead, K. Puduppakkam, P. Thakre, V. Yang, Prog. Energy Combust. Sci. 33, 497 (2007)

    Google Scholar 

  3. T.L. Jackson, AIAA J. 50, 993 (2012)

    ADS  Google Scholar 

  4. C. Dennis, B. Bojko, Fuel 254, 115646 (2019)

    Google Scholar 

  5. T. Edwards, Solid propellant flame spectroscopy, AFAL-TR-88-076 (1988)

  6. K.K. Kuo, Fundamentals of Solid-Propellant Combustion (AIAA, 1984)

  7. P. Bucher, R.A. Yetter, F.L. Dryer, T.P. Parr, Combustion 27, 2421 (1998)

    Google Scholar 

  8. D.R. Guildenbecher, M.A. Cooper, W. Gill, H.L. Stauffacher, M.S. Oliver, T.W. Grasser, Opt. Lett. 39, 5126 (2014)

    ADS  Google Scholar 

  9. Y. Chen, D.R. Guildenbecher, K.N.G. Hoffmeister, M.A. Cooper, H.L. Stauffacher, M.S. Oliver, E.B. Washburn, Combust. Flame 182, 225 (2017)

    Google Scholar 

  10. S.P. Kearney, D.R. Guildenbecher, Appl. Opt. 55, 4958 (2016)

    ADS  Google Scholar 

  11. M. O’Neil, N.A. Niemiec, A.R. Demko, E.L. Petersen, W.D. Kulatilaka, Appl. Opt. 57, 1910 (2018)

    ADS  Google Scholar 

  12. E.J. Beiting, Appl. Opt. 24, 3010 (1985)

    ADS  Google Scholar 

  13. M.W. Beckstead, R.L. Derr, C.F. Price, AIAA J. 8, 2200 (1970)

    ADS  Google Scholar 

  14. O.P. Korobeinichev, N.E. Ermolin, A.A. Chernov, I.D. Emel, Combust. Explos. Shock Waves 28, 366 (1992)

    Google Scholar 

  15. M. Jeppson, M. Beckstead, Q. Jing, in 36th AIAA Aerosp. Sci. Meet. Exhib. (1997)

  16. T.P. Parr, D.M. Hanson-Parr, M.D. Smooke, R.A. Yetter, Proc. Combust. Inst. 29, 2881 (2002)

    Google Scholar 

  17. T.P. Parr, D.M. Hanson-Parr, M.D. Smooke, R.A. Yetter, Proc. Combust. Inst. 30(II), 2113 (2005)

    Google Scholar 

  18. J.D. Miller, M.N. Slipchenko, T.R. Meyer, H.U. Stauffer, J.R. Gord, Opt. Lett. 35, 2430 (2010)

    ADS  Google Scholar 

  19. S.P. Kearney, Combust. Flame 162, 1748 (2014)

    Google Scholar 

  20. C.E. Dedic, T.R. Meyer, J.B. Michael, Optica 4, 563 (2017)

    ADS  Google Scholar 

  21. A. Bohlin, C. Jainski, B.D. Patterson, A. Dreizler, C.J. Kliewer, Proc. Combust. Inst. 36, 4557 (2017)

    Google Scholar 

  22. D.R. Richardson, H.U. Stauffer, S. Roy, J.R. Gord, Appl. Opt. 56, E37 (2017)

    ADS  Google Scholar 

  23. V. Bergmann, W. Stricker, Appl. Phys. B Laser Opt. 61, 49 (1995)

    ADS  Google Scholar 

  24. R.D. Hancock, K.E. Bertagnolli, R.P. Lucht, Combust. Flame 109, 323 (1997)

    Google Scholar 

  25. J. Hussong, W. Stricker, X. Bruet, P. Joubert, J. Bonamy, D. Robert, X. Michaut, T. Gabard, H. Berger, Appl. Phys. B Lasers Opt. 70, 447 (2000)

    ADS  Google Scholar 

  26. V. Kornas, V. Schulz-von der Gathen, T. Bornemann, H.F. Döbele, G. Prosz, Plasma Chem. Plasma Process. 11, 171 (1991)

    Google Scholar 

  27. W.D. Kulatilaka, P.S. Hsu, H.U. Stauffer, J.R. Gord, S. Roy, Appl. Phys. Lett. 97, 198 (2010)

    Google Scholar 

  28. H.U. Stauffer, W.D. Kulatilaka, P.S. Hsu, J.R. Gord, S. Roy, Appl. Opt. 50, A38 (2011)

    ADS  Google Scholar 

  29. T. Lang, K.L. Kompa, M. Motzkus, Chem. Phys. Lett. 310, 65 (1999)

    ADS  Google Scholar 

  30. H. Skenderovic, T. Buckup, W. Wohlleben, M. Motzkus, J. Raman Spectrosc. 33, 866 (2002)

    ADS  Google Scholar 

  31. T.L. Courtney, A. Bohlin, B.D. Patterson, C.J. Kliewer, J. Chem. Phys. 146, 224202 (2017)

    ADS  Google Scholar 

  32. T. Lang, M. Motzkus, JOSA B 19, 340 (2002)

    ADS  Google Scholar 

  33. A. Bohlin, C.J. Kliewer, Appl. Phys. Lett. 105, 161111 (2014)

    ADS  Google Scholar 

  34. K.N. Gabet Hoffmeister, D.R. Guildenbecher, S.P. Kearney, in 54th Aerosp. Sci. Meet. (2016), pp. 1–13

  35. R.P. Lucht, S. Roy, T.R. Meyer, J.R. Gord, T.R. Meyer, Appl. Phys. Lett. 89, 251112 (2006)

    ADS  Google Scholar 

  36. R.L. Farrow, G.O. Sitz, J. Opt. Soc. Am. B 6, 865 (1989)

    ADS  Google Scholar 

  37. T.M. James, M. Schlösser, S. Fischer, M. Sturm, B. Bornschein, R.J. Lewis, H.H. Telle, J. Raman Spectrosc. 44, 857 (2013)

    ADS  Google Scholar 

  38. M. Marrocco, J. Raman Spectrosc. 41, 870 (2010)

    ADS  Google Scholar 

  39. M. Marrocco, Chem. Phys. Lett. 442, 224 (2007)

    ADS  Google Scholar 

  40. M. Marrocco, J. Raman Spectrosc. 43, 621 (2012)

    ADS  Google Scholar 

  41. R.H. Tipping, J.F. Ogilvie, J. Raman Spectrosc. 15, 38 (1984)

    ADS  Google Scholar 

  42. D.K. Veirs, G.M. Rosenblatt, J. Mol. Spectrosc. 121, 401 (1987)

    ADS  Google Scholar 

  43. J.L. Dunham, Phys. Rev. 41, 721 (1932)

    ADS  Google Scholar 

  44. U. Fink, T.A. Wiggins, D.H. Rank, J. Mol. Spectrosc. 18, 384 (1965)

    ADS  Google Scholar 

  45. A. Popovas, U.G. Jorgensen, Astron. Astrophys. 595, 1 (2016)

    Google Scholar 

  46. A. Irwin, Astron. Astrophys. 182, 348 (1987)

    ADS  Google Scholar 

  47. I. Dabrowski, Can. J. Phys. 62, 1639 (1984)

    ADS  Google Scholar 

  48. W. Kolos, L. Wolniewicz, J. Mol. Spectrosc. 54, 303 (1975)

    ADS  Google Scholar 

  49. C. Schwartz, R.J. Le Roy, J. Mol. Spectrosc. 121, 420 (1987)

    ADS  Google Scholar 

  50. L. Wolniewicz, J. Chem. Phys. 103, 1792 (1995)

    ADS  Google Scholar 

  51. R.E. Palmer, The CARSFT computer code calculating coherent anti-Stokes Raman spectra: User and programmer information, SAND-89-8206 (1989)

  52. H. Abgrall, E. Roueff, F. Launay, J.Y. Roncin, J.-L. Subtil, J. Mol. Spectrosc. 157, 512 (1993)

    ADS  Google Scholar 

  53. L.A. Rahn, G.J. Rosasco, Phys. Rev. A 41, 3698 (1990)

    ADS  Google Scholar 

  54. T. Lang, M. Motzkus, J. Raman Spectrosc. 31, 65 (2000)

    ADS  Google Scholar 

  55. I.G. Konovalov, V.B. Morozov, V.G. Tunkin, A.V. Mikheev, J. Mol. Struct. 348, 41 (1995)

    ADS  Google Scholar 

  56. R.H. Dicke, Phys. Rev. 105, 472 (1953)

    ADS  Google Scholar 

  57. J.R. Murray, A. Javan, J. Mol. Spectrosc. 42, 1 (1972)

    ADS  Google Scholar 

  58. L.A. Rahn, R.L. Farrow, G.J. Rosasco, Phys. Rev. A 43, 6075 (1991)

    ADS  Google Scholar 

  59. F. De Martini, F. Simoni, E. Santamato, Opt. Commun. 9, 176 (1973)

    ADS  Google Scholar 

  60. S.A. Magnitskiĭ, V.G. Tunkin, Sov. J. Quantum Electron. 11, 1218 (1981)

    ADS  Google Scholar 

  61. V.G. Arakcheev, D.V. Jakovlev, V.B. Morozov, A.N. Olenin, V.G. Tunkin, J. Raman Spectrosc. 34, 977 (2003)

    ADS  Google Scholar 

  62. L. Galatry, Phys. Rev. 122, 1218 (1961)

    ADS  Google Scholar 

  63. M.A. Henesian, L. Kulevskii, R.L. Byer, R.L. Herbst, Opt. Commun. 18, 225 (1976)

    ADS  Google Scholar 

  64. J.R. Murray, A. Javan, J. Mol. Spectrosc. 29, 502 (1969)

    ADS  Google Scholar 

  65. P. Lallemand, P. Simova, G. Bret, Phys. Rev. Lett. 17, 1239 (1966)

    ADS  Google Scholar 

  66. H.U. Stauffer, J.D. Miller, S. Roy, J.R. Gord, T.R. Meyer, J. Chem. Phys. 136, 111101 (2012)

    ADS  Google Scholar 

  67. S.P. Kearney, D.J. Scoglietti, Opt. Lett. 38, 833 (2013)

    ADS  Google Scholar 

  68. A.C. Eckbreth, Appl. Phys. Lett. 32, 421 (1978)

    ADS  Google Scholar 

  69. W.D. Kulatilaka, H.U. Stauffer, J.R. Gord, S. Roy, Opt. Lett. 36, 4182 (2011)

    ADS  Google Scholar 

  70. L.M. Thomas, A. Satija, R.P. Lucht, Appl. Opt. 56, 8797 (2017)

    ADS  Google Scholar 

  71. B.J. McBride, S. Gordon, Computer program for calculation of complex chemical equilibrium compositions and applications. Part 1: Analysis., NASA Ref. Publ. 1311 (1996)

  72. A. Bohlin, M. Mann, B.D. Patterson, A. Dreizler, C.J. Kliewer, Proc. Combust. Inst. 35, 3723 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Yi Chen and Daniel Guildenbecher for providing the aluminum particle pyrometry data, as well as Howard L. Stauffacher, Sam M. Reardon, and Glen White for their expertise in setting up and igniting the propellant sticks. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Richardson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Retter, J.E., Richardson, D.R. & Kearney, S.P. Rotational hydrogen thermometry by hybrid fs/ps coherent anti-Stokes Raman scattering in the plume of a burning metalized propellant. Appl. Phys. B 126, 83 (2020). https://doi.org/10.1007/s00340-020-07434-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07434-3

Navigation