Skip to main content
Log in

Dual-parameter sensor using low-index polymer-overlaid micro-resonator based on dispersion relation

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A low-index polymer-overlaid micro-resonator (LIMR) with high sensitivity is investigated for simultaneous temperature and ambient refractive index (ARI) measurement. The sensitivity of the proposed LIMR to the ambient index is remarkably enhanced at the turning points of the dispersion curve. After examining the optical spectrum of the proposed LIMR sensor, we assess two typical configurations formed at the output of the fiber, fast-varying resonator (FVR) and slow-varying interferometer (SVI). The dual parameter sensing probe measures simultaneously, showing a presentation of temperature and ARI with the experimental sensing proportions of 0.30 nm/°C and 304 nm/RIU to FVR, 1.16 nm/°C and 1874 nm/RIU analogously to SVI. Therefore, it is possible to successfully discriminate temperature and ARI sensitivities by measuring different wavelength shifts of the proposed LIMR based on calculated dispersion curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Li, L. Xia, Z. Xie, D. Liu, All-fiber Mach-Zehnder interferometer for sensing applications. Opt. Express 20(10), 11109–11120 (2012)

    Article  ADS  Google Scholar 

  2. H.J. Kim, Y.G. Han, Polarization-dependent in-line Mach-Zehnder interferometer for discrimination of temperature and ambient index sensitivities. J. Lightwave Technol. 30(8), 1037–1041 (2012)

    Article  ADS  Google Scholar 

  3. N. Zhong, Q. Liao, X. Zhu, M. Zhao, Y. Huang, R. Chen, Temperature-independent polymer optical fiber evanescent wave sensor. Sci. Rep. 5, 11508 (2015)

    Article  ADS  Google Scholar 

  4. L. Mao, S. Pu, D. Su, Z. Wang, X. Zeng, M. Lahoubi, Magnetic field sensor based on cascaded microfiber coupler with magnetic fluid. J. Appl. Phys. 120(9), 093102 (2016)

    Article  ADS  Google Scholar 

  5. Y. Wu, B.C. Yao, Y. Cheng, Y.J. Rao, Y. Gong, W. Zhang, Z. Wang, Y. Chen, Hybrid graphene-microfiber waveguide for chemical gas sensing. IEEE J. Sel. Top Quant. Electro. 20(1), 4400206 (2014)

    Google Scholar 

  6. Y. Wang, M. Yang, G. Zhang, J. Dai, Y. Zhang, Z. Zhuang, W. Hu, Fiber optic hydrogen sensor based on Fabry-Perot interferometer coated with sol-gel Pt/WO3 coating. J. Lightwave Technol. 33(12), 2530–2534 (2015)

    Article  ADS  Google Scholar 

  7. T. Li, X. Dong, C.C. Chan, K. Ni, S. Zhang, P.P. Shum, Humidity sensor with a PVA-coated photonic crystal interferometer. IEEE Sens. J. 13(6), 2214–2216 (2013)

    Article  ADS  Google Scholar 

  8. J. Ge, M.P. Fok, Ultrahigh-speed radio frequency switch based on photonics. Sci. Rep. 5, 17263 (2015)

    Article  ADS  Google Scholar 

  9. F.B. Mejia, J.H. Osorio, C.R. Biazoli, C.M.B. Cordeiro, D-microfibers. J. Lightwave Technol. 31(16), 2756–2761 (2013)

    Article  ADS  Google Scholar 

  10. Y. Zhao, X. Liu, R.Q. Lv, Q. Wang, Simultaneous measurement of RI and temperature based on the combination of Sagnac loop mirror and balloon-like interferometer. Sens. Actuators B Chem. 243, 563–569 (2017)

    Google Scholar 

  11. W.C. Wong, C.C. Chan, L.H. Chen, T. Li, K.X. Lee, K.C. Leong, Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement. Sens. Actuators B Chem. 174, 563–569 (2013)

    Article  Google Scholar 

  12. Y. Liu, W. Peng, Y.Z. Liang, X.P. Zhang, X.L. Zhou, L.J. Pan, Fiber-optic Mach Zehnder interferometric sensor for high-sensitivity high temperature measurement. Opt. Commun. 300, 194–198 (2013)

    Article  ADS  Google Scholar 

  13. M.S. Yoon, S.K. Kim, Y.G. Han, Highly sensitive current sensor based on an optical microfiber loop resonator incorporating low index polymer overlay. J. Lightwave Technol. 33(12), 2386–2391 (2015)

    Article  ADS  Google Scholar 

  14. J.C. Shin, M.S. Yoon, Y.-G. Han, Relative humidity sensor based on an optical microfiber knot resonator with a polyvinyl alcohol overlay. J. Lightwave Technol. 34(19), 4511–4515 (2016)

    Article  ADS  Google Scholar 

  15. W.B. Ji, H.H. Liu, S.C. Tjin, K.K. Chow, A. Lim, Ultrahigh sensitivity refractive index sensor based on optical microfiber. IEEE Photon. Technol. Lett. 24(20), 1872–1874 (2012)

    Article  ADS  Google Scholar 

  16. Anh, D.D.L., Lee, S., Han, Y.G.: Relative humidity sensor based on a few-mode microfiber knot resonator by mitigating group index difference. In: SPIE Proceedings on 25th OFS, 103232Y, (2017). https://doi.org/10.1117/12.2263972.

  17. W.C. Wong, C.C. Chan, L.H. Chen, T. Li, K.X. Lee, K.C. Leong, Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement. Sens. Actuators B Chem. 174, 563–569 (2012)

    Article  Google Scholar 

  18. P. Hu, X. Dong, K. Ni, L.H. Chen, W.C. Wong, C.C. Chan, Sensitivity-enhanced Michelson interferometric humidity sensor with waist-enlarged fiber bi-taper. Sens. Actuators B Chem. 194, 180–184 (2014)

    Article  Google Scholar 

  19. W. Zhang, D.J. Webb, Humidity responsivity of poly (methyl methacrylate)-based optical fiber Bragg grating sensors. Opt. Lett. 39(10), 3026–3029 (2014)

    Article  ADS  Google Scholar 

  20. S.W. James, S. Korposh, S.-W. Lee, R.P. Tatam, A long period grating-based chemical sensor insensitive to the influence of interfering parameters. Opt. Express 22, 8012–8023 (2014)

    Article  ADS  Google Scholar 

  21. F.J. Arregui, I.R. Matías, K.L. Cooper, R.O. Claus, Simultaneous measurement of humidity and temperature by combining a reflective intensity-based optical fiber sensor and a fiber Bragg grating. IEEE Sens. J. 2, 482–487 (2002)

    Article  ADS  Google Scholar 

  22. Z. Zhao, Y. Duan, A low cost fiber-optic humidity sensor based on silica sol–gel film. Sens. Actuators B: Chem. 160, 1340–1345 (2011)

    Article  Google Scholar 

  23. H. Liu, H. Liang, M. Sun, K. Nai, Y. Jin, Simultaneous measurement of humidity and temperature based on a long-period fiber grating inscribed in fiber loop mirror. IEEE Sens. J. 14, 893–896 (2014)

    Article  ADS  Google Scholar 

  24. X. Zhang, H. Chen, H. Zhang, Layer-by-layer assembly: from conventional to unconventional methods. Chem. Comm. 14, 1395–1405 (2007)

    Article  Google Scholar 

  25. Y.C. Lin, C.L. Chang, T.S. Lin, H. Bai, M.G. Yan, F.H. Ko, C.T. Wu, C.H. Huang, Application of physical vapor deposition process to modify activated carbon fibers for ozone reduction. Korean J. Chem. Eng. 25, 446–450 (2008)

    Article  Google Scholar 

  26. X. Huang, X. Li, J. Yang, C. Tao, X. Guo, H. Bao, Y. Yin, H. Chen, Y. Zhu, An in line Mach-Zehnder interferometer using thin-core fiber for ammonia gas sensing with high sensivitiy. Sci. Rep. 7, 44994 (2017)

    Article  ADS  Google Scholar 

  27. J. Yang, L. Zhou, J. Huang, C. Tao, X. Li, W. Chen, Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition. Sens. Actuators B Chem. 207, 477–480 (2015)

    Article  Google Scholar 

  28. D.W. Kim, F. Shen, X. Chen, A. Wang, Simultaneous measurement of refractive index and temperature based on a reflection-mode long-period grating and an intrinsic Fabry-Perot interferometer sensor. Opt. Lett. 30, 3000–3002 (2005)

    Article  ADS  Google Scholar 

  29. Marques, L., Hernandez, F.U., Korposh, S., Clark, M., Morgan, S., James, S., Tatam, R.P.: Sensitive protein detection using an optical fibre long period grating sensor anchored with silica core gold shell nanoparticles. In: Proceedings of SPIE International Society of Optical Engineering, vol. 9157 (2014).

  30. A.D.D. Le, Y.G. Han, Relative humidity sensor based on a few-mode microfiber knot resonator by mitigating the group index difference of a few-mode microfiber. J. Lightwave Technol. 36, 904–909 (2018)

    Article  ADS  Google Scholar 

  31. Le, D.D.A., Lee, S.M., Han, Y.G.: Relative humidity sensor based on a few-mode microfiber knot resonator by mitigating group index difference. In: Proceedings of SPIE 103232Y (2017). https://doi.org/10.1117/12.22623972.

  32. W.B. Ji, Y.C. Tan, B. Lin, S.C. Tjin, K.K. Chow, Nonadiabatically tapered microfiber sensor with ultrashort waist. IEEE Photon. Technol. Lett. 26, 2303–2306 (2014)

    Article  ADS  Google Scholar 

  33. H. Luo, Q. Sun, Z. Li, Z. Li, Z. Yan, Y. Ku, D. Liu, L. Zhang, Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach-Zehnder interferometer. Opt. Lett. 40, 5042–5045 (2015)

    Article  ADS  Google Scholar 

  34. A.J. Fielding, K. Edinger, C.C. Davis, Experimental observation of mode evolution in single-mode tapered optical fibers. J. Lightwave Technol. 17, 1649–1656 (1999)

    Article  ADS  Google Scholar 

  35. J. Li, L.P. Sun, S. Gao, Z. Quan, Y.L. Chang, Y. Ran, L. Jin, B. Guam, Ultrasensitive refractive-index sensor based on rectangular silica microfibers. Opt. Lett. 36, 3593–3595 (2011)

    Article  ADS  Google Scholar 

  36. M. Koerdt, S. Kibben, O. Bendig, S. Chandrashekhar, J. Hesselbach, C. Brauner, A.S. Herrmann, F. Vollertsen, L. Kroll, Fabrication and characterization of Bragg gratings in perflourinated polymer optical fibers and theirs embedding in composites. Mechatronics 34, 137–146 (2016)

    Article  Google Scholar 

  37. A. Urrutia, J. Goicoechea, A.L. Ricchiuti, D. Barrera, S. Sales, F.J. Arregui, Simultaneous measurement of humidity and temperature based on apartially coated optical fiber long period grating. Sens. Actuators B Chem. 227, 135–141 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preecha Yupapin.

Ethics declarations

Conflict of interest

The authors have declared that this work has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, A.D.D., Dat, N.D. & Yupapin, P. Dual-parameter sensor using low-index polymer-overlaid micro-resonator based on dispersion relation. Appl. Phys. B 126, 81 (2020). https://doi.org/10.1007/s00340-020-07437-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07437-0

Navigation