Skip to main content
Log in

Investigation of laser damage of grating waveguide structures submitted to sub-picosecond pulses

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Grating waveguide structures (GWS) are reflective diffractive optical elements that operate based on the combination of sub-wavelength gratings (periodic microstructures) integrated with planar waveguides. They can be used for high-power laser applications for pulse compression, spectral stabilization, wavelength multiplexing, as well as polarization shaping. In this work, we investigate the laser-damage resistance of GWS based on Ta2O5/SiO2 multilayers at pulse durations of 500 fs and wavelength of 1030 nm. We particularly study the influence of the material of the multilayer sequence, the designed grating structure, and the operational conditions (angle of incidence and polarization of the laser beam) on the laser-damage resistance of the GWS. Comparison of measurements to simulation of the electric-field distribution in the structure reveals a good correlation between laser-induced damage threshold (LIDT) values and electric-field enhancement in the structure. Based on this work, an optimized design has been defined to increase the LIDT of the GWS. An improvement of the LIDT of a factor 2 has been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F. Canova, O. Uteza, J.P. Chambaret, M. Flury, S. Tonchev, R. Fechner, O. Parriaux, Opt. Express 15, 15324 (2007)

    Article  ADS  Google Scholar 

  2. M.A. Ahmed, M. Haefner, M.M. Vogel, C. Pruss, A. Voss, W. Osten, T. Graf, Opt. Exp. 19, 5093–5103 (2011)

    Article  ADS  Google Scholar 

  3. T. Kämpfe, S. Tonchev, A.V. Tishchenko, D. Gergov, O. Parriaux, Opt. Express 20, 5392–5401 (2012)

    Article  ADS  Google Scholar 

  4. J.-P. Negel, A. Loescher, B. Dannecker, P. Oldorf, S. Reichel, R. Peters, M.A. Ahmed, T. Graf, Appl. Phys. B 123, 156 (2017)

    Article  ADS  Google Scholar 

  5. M. Eckerle, F. Beirow, T. Dietrich, F. Schaal, C. Pruss, W. Osten, N. Aubry, M. Perrier, J. Didierjean, X. Délen, F. Balembois, P. Georges, M.A. Ahmed, T. Graf, Appl. Phys. B 123, 139 (2017)

    Article  ADS  Google Scholar 

  6. A.V. Tishchenko, V.A. Sychugov, Opt. Quantum Electr. 32, 1027–1031 (2000)

    Article  Google Scholar 

  7. T. Dietrich, S. Piehler, C. Röcker, M. Rumpel, M.A. Ahmed, T. Graf, Opt. Lett. 42, 3263–3266 (2017)

    Article  ADS  Google Scholar 

  8. T. Dietrich, S. Piehler, M. Rumpel, P. Villeval, D. Lupinski, M. Abdou-Ahmed, T. Graf, Opt. Express 25, 4917–4925 (2017)

    Article  ADS  Google Scholar 

  9. M. Rumpel, A. Voss, M. Moeller, F. Habel, C. Moormann, M. Schacht, T. Graf, M.A. Ahmed, Opt. Lett. 37, 4188–4190 (2012)

    Article  ADS  Google Scholar 

  10. M. Flury, A.V. Tishchenko, O. Parriaux, J. Lightwave Technol. 25, 1870–1878 (2007)

    Article  ADS  Google Scholar 

  11. J. Jasapara, A.V.V. Nampoothiri, W. Rudolph, D. Ristau, K. Starke, Phys. Rev. B 63, 045117 (2001)

    Article  ADS  Google Scholar 

  12. S. Liu, Z. Shen, W. Kong, J. Shen, Z. Deng, Y. Zhao, J. Shao, Z. Fan, Opt. Commun. 267, 50–57 (2006)

    Article  ADS  Google Scholar 

  13. J. Neauport, E. Lavastre, G. Razé, G. Dupuy, N. Bonod, M. Balas, G. de Villele, J. Flamand, S. Kaladgew, F. Desserouer, Opt. Express 15, 12508 (2007)

    Article  ADS  Google Scholar 

  14. H. Guan, Y. Jin, S. Liu, F. Kong, Y. Du, K. He, K. Yi, J. Shao, Appl. Phys. B 114, 157 (2014)

    Article  Google Scholar 

  15. A. Hervy, L. Gallais, G. Cheriaux, D. Mouricaud, Opt. Eng. 56, 011001 (2017)

    Article  ADS  Google Scholar 

  16. T. Willemsen, M. Jupé, M. Gyamfi, S. Schlichting, D. Ristau, Opt. Express 25, 31948 (2017)

    Article  ADS  Google Scholar 

  17. N. Destouches, A.V. Tishchenko, J.C. Pommier, S. Reynaud, O. Parriaux, S. Tonchev, M.A. Ahmed, Opt. Express 13, 3230–3235 (2005)

    Article  ADS  Google Scholar 

  18. M. Rumpel, M. Moeller, C. Moormann, T. Graf, M.A. Ahmed, Opt. Lett. 39, 323 (2014)

    Article  ADS  Google Scholar 

  19. L.C. Boten, M.S. Graig, R.C. Mcphedran, J.L. Adams, J.R. Andrewartha, Opt. Acta 28, 413 (1981)

    Article  ADS  Google Scholar 

  20. B. Mangote, L. Gallais, M. Zerrad, F. Lemarchand, L.H. Gao, M. Commandré, M. Lequime, Rev. Sci. Instrum. 83, 013109 (2012)

    Article  ADS  Google Scholar 

  21. ISO Standard Nos. 21254-1-212544 (2011)

  22. M. Mero, J. Liu, W. Rudolph, D. Ristau, K. Starke, Phys. Rev. B 71, 115109 (2005)

    Article  ADS  Google Scholar 

  23. J.A. Britten, W. Molander, A.M. Komashko, C.P.J. Barty, Proc. SPIE 5273, 1–7 (2003)

    ADS  Google Scholar 

  24. S. Hocquet, J. Neauport, N. Bonod, Appl. Phys. Lett. 99, 061101 (2011)

    Article  ADS  Google Scholar 

  25. M. Chorel, T. Lanternier, E. Lavastre, N. Bonod, B. Bousquet, J. Néauport, Opt. Express 26, 11764 (2018)

    Article  ADS  Google Scholar 

  26. L. Gallais, M. Commandré, Appl. Opt. 53, A186 (2014)

    Article  ADS  Google Scholar 

Download references

Funding

This work was partly funded by the Federal Ministry of Economics and Technology (BMWi) within the project Resogit and partly funded by the project Hiperdias which is an initiative of the Photonics Public Private Partnership and has received funding from the European Union’s Horizon 2020 research and innovation program under Grant agreement no. 687880.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Gallais.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallais, L., Rumpel, M., Moeller, M. et al. Investigation of laser damage of grating waveguide structures submitted to sub-picosecond pulses. Appl. Phys. B 126, 69 (2020). https://doi.org/10.1007/s00340-020-07419-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07419-2

Navigation