Skip to main content
Log in

Occurrence control of charged exciton for a single CdSe quantum dot at cryogenic temperatures on an optical nanofiber

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We discuss photo-luminescence characteristics of CdSe core/shell quantum dots at cryogenic temperatures using a hybrid system of a single quantum dot and an optical nanofiber. The key point is to control the emission species of quantum dot to charged excitons, known as trions, which have superior characteristics to neutral excitons. We investigate the photocharging behavior for the quantum dots by varying the wavelength and intensity of irradiating laser light, and establish a method to create a permanently charged situation which lasts as long as the cryogenic temperature is maintained. The present photocharging method may open a new route to applying the CdSe quantum dots in quantum photonics, and the hybrid system of photocharged quantum-dot and optical nanofiber may readily be applicable to a fiber-in-line single-photon generator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I. Aharonovich, D. Englund, M. Toth, Nat. Photon. 10, 631 (2016)

    Article  ADS  Google Scholar 

  2. K.P. Nayak et al., J. Opt. 20, 073001 (2018)

    Article  ADS  Google Scholar 

  3. A. Sipahigil et al., Science 354, 847 (2016)

    Article  ADS  Google Scholar 

  4. S.M. Skoff et al., Phys. Rev. A 97, 043839 (2018)

    Article  ADS  Google Scholar 

  5. R. Yalla, K.P. Nayak, K. Hakuta, Opt. Express 20, 2932 (2012)

    Article  ADS  Google Scholar 

  6. M. Fujiwara et al., Opt. Lett. 40, 5702 (2015)

    Article  ADS  Google Scholar 

  7. A.W. Schell et al., ACS Photon. 4, 761 (2017)

    Article  Google Scholar 

  8. J.M. Pietryga et al., Chem. Rev. 116, 10513 (2016)

    Article  Google Scholar 

  9. A.H. David et al., Science 363, 1199 (2019)

    Article  Google Scholar 

  10. Y. Louyer, L. Biadala, P. Tamarat, B. Lounis, Appl. Phys. Lett. 96, 203111 (2010)

    Article  ADS  Google Scholar 

  11. L. Biadala, Y. Louyer, P. Tamarat, B. Lounis, Phys. Rev. Lett. 103, 037404 (2009)

    Article  ADS  Google Scholar 

  12. O. Labeau, P. Tamarat, B. Lounis, Phys. Rev. Lett. 90, 257404 (2003)

    Article  ADS  Google Scholar 

  13. C. Javaux et al., Nat. Nanotechnol. 8, 206 (2013)

    Article  ADS  Google Scholar 

  14. M.J. Fernee et al., Nat. Commun. 3, 1287 (2012)

    Article  ADS  Google Scholar 

  15. C.M. Natarajan, M.G. Tanner, R.H. Hadfield, Supercond. Sci. Technol. 25, 063001 (2012)

    Article  ADS  Google Scholar 

  16. M.K. Bhaskar et al., Phys. Rev. Lett. 118, 223603 (2017)

    Article  ADS  Google Scholar 

  17. A. Schlehahn et al., Sci. Rep. 8, 1340 (2018)

    Article  ADS  Google Scholar 

  18. F. Liu et al., Phys. Rev. B 88, 035302 (2013)

    Article  ADS  Google Scholar 

  19. M.J. Fernee, B.N. Littleton, H. Rubinsztein-Dunlop, ACS Nano 3, 3762 (2009)

    Article  Google Scholar 

  20. D.E. Gomez et al., ACS Nano 3, 2281 (2009)

    Article  Google Scholar 

  21. J.D. Rinehart et al., J. Am. Chem. Soc. 135, 18782 (2013)

    Article  Google Scholar 

  22. K.M. Shafi et al., Sci. Rep. 8, 13494 (2018)

    Article  ADS  Google Scholar 

  23. F.L. Kien, S.D. Gupta, V.I. Balykin, K. Hakuta, Phys. Rev. A 72, 032509 (2005)

    Article  ADS  Google Scholar 

  24. R. Yalla, F.L. Kien, M. Morinaga, K. Hakuta, Phys. Rev. Lett. 109, 063602 (2012)

    Article  ADS  Google Scholar 

  25. C.A. Leatherdale, W.-K. Woo, F.V. Mikulec, M.G. Bawendi, J. Phys. Chem. B 106, 7619 (2002)

    Article  Google Scholar 

  26. A.V. Rodina, A.A. Golovatenko, E.V. Shornikova, Phys. Solid State 60, 1537 (2018)

    Article  ADS  Google Scholar 

  27. M. Jones, S.S. Lo, G.D. Scholes, Proc. Natl. Acad. Sci. USA 106, 3011 (2009)

    Article  ADS  Google Scholar 

  28. J.A. McGuire et al., ACS Nano 4, 6087 (2010)

    Article  Google Scholar 

  29. S. Li, M.L. Steigerwald, L.E. Brus, ACS Nano 3, 1267 (2009)

    Article  Google Scholar 

  30. E. Lifshitz, I. Dag, I.D. Litvitn, G. Hodes, J. Phys. Chem. B 102, 9245 (1998)

    Article  Google Scholar 

  31. M. Abdellah et al., J. Phys. Chem. C 118, 21682 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Mark Sadgrove for his careful reading and critical comments to the manuscript. This work was supported by the Japan Science and Technology Agency (JST) through Strategic Innovation Program (Grant No. JPMJSV0918).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohzo Hakuta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafi, K.M., Iida, K., Tsutsumi, E. et al. Occurrence control of charged exciton for a single CdSe quantum dot at cryogenic temperatures on an optical nanofiber. Appl. Phys. B 126, 68 (2020). https://doi.org/10.1007/s00340-020-7416-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-7416-4

Navigation