Skip to main content

Advertisement

Log in

Graphitic carbon nitride functionalized with four boron atoms for adsorption and separation of CO2/CH4: DFT calculations

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The adsorption of CO2 and CH4 on graphitic carbon nitride (g-C3N4) functionalized with four boron atoms (g-C43N4B4) were investigated by using the density functional theory for adsorption and separation of the CO2/CH gas molecules. The calculated Eads values showed that the CO2 molecule, in comparison with the CH4 molecule, has favorable interaction with the boron cluster hosted in the sheet. The capacity of adsorption of the g-C3N4B4 complex with other small gas molecules (C2H4, H2, NH3, and SO2) was also studied observing chemisorption for the H2 molecule. The computational studies revealed physisorption and selectivity of CO2 molecule over CH4 on the sheet. This material could serve as promising adsorbent of CO2 and for natural gas purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alabadi, A., Razzaque, S., Yang, Y., Chen, S., Tan, B.: Highly porous activated carbon materials from carbonized biomass with high CO2 capturing capacity. Chem. Eng. J. 281, 606–612 (2015)

    CAS  Google Scholar 

  • Anithaa, V.S., Shankar, R., Vijayakumar, S.: DFT-based investigation on adsorption of methane on pristine and defected graphene. Struct. Chem. 28(6), 1935–1952 (2017)

    CAS  Google Scholar 

  • Baei, T.M., Peyghan, A.A., Bagheri, Z.: A DFT study on CO2 interaction with a BN nano-cage. Bull. Korean Chem. Soc 33(10), 3338–3342 (2012)

    CAS  Google Scholar 

  • Chew, T.-L., Ahmad, A.L., Bhatia, S.: Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2). Adv. Colloid Interface Sci. 153(1), 43–57 (2010)

    CAS  PubMed  Google Scholar 

  • Choi, H., Park, Y.C., Kim, Y.H., Lee, Y.S.: Ambient carbon dioxide capture by boron-rich boron nitride nanotube. J. Am. Chem. Soc. 133(7), 2084–2087 (2011)

    CAS  PubMed  Google Scholar 

  • Dong, H., Lin, B., Gilmore, K., Hou, T., Lee, S.T., Li, Y.: B40 fullerene: an efficient material for CO2 capture, storage and separation. Curr. Appl. Phys. 15(9), 1084–1089 (2015)

    Google Scholar 

  • Fina, F., Callear, S.K., Carins, G.M., Irvine, J.T.S.: Structural investigation of graphitic carbon nitride via XRD and neutron diffraction. Chem. Mater. 27(7), 2612–2618 (2015)

    CAS  Google Scholar 

  • Furukawa, H., Ko, N., Go, Y.B., Aratani, N., Choi, S.B., Choi, E., Yazaydin, A., Snurr, R.Q., O’Keeffe, M., Kim, J., Yaghi, O.M.: Ultrahigh porosity in metal-organic frameworks. Science 329(5990), 424–428 (2010)

    CAS  PubMed  Google Scholar 

  • Ganji, M.D., Mirnejad, A., Najafi, A.: Theoretical investigation of methane adsorption onto boron nitride and carbon nanotubes. ‎Sci. Technol. Adv. Mater 11(4), 045001 (2010)

    PubMed  PubMed Central  Google Scholar 

  • Gao, H., Yan, S., Wang, J., Huang, Y.A., Wang, P., Li, Z., Zou, Z.: Towards efficient solar hydrogen production by intercalated carbon nitride photocatalyst. Phys. Chem. Chem. Phys. 15(41), 18077–18084 (2013)

    CAS  PubMed  Google Scholar 

  • Glendening, E.D., Landis, C.R., Weinhold, F.: NBO 6.0: natural bond orbital analysis program. J. Comp. Chem. 34, 1429–1437 (2013)

    CAS  Google Scholar 

  • House, K.Z., Harvey, C.F., Aziz, M.J., Schrag, D.P.: The energy penalty of post-combustion CO2 capture & storage and its implications for retrofitting the U.S. installed base. Energy Environ. Sci. 2(2), 193–205 (2009)

    CAS  Google Scholar 

  • Huang, W., Sergeeva, A.P., Zhai, H.-J., Averkiev, B.B., Wang, L.-S., Boldyrev, A.I.: A concentric planar doubly π-aromatic B19 – cluster. Nat. Chem. 2, 202–206 (2010)

    PubMed  Google Scholar 

  • Jacobson, M.Z.: Evaluation of proposed solutions to global warming, air pollution, and energy security. Energy Environ. Sci. 2, 148–173 (2009)

    CAS  Google Scholar 

  • Krishnan, R., Binkley, J.S., Seeger, R., Pople, J.A.: Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Phys. Chem. 72(1), 650–654 (1980)

    CAS  Google Scholar 

  • Kumar, J., Nemade, H.B., Giri, P.K.: Adsorption of small molecules on niobium doped graphene: a study based on density functional theory. IEEE Electron. Device Lett. 39(2), 296–299 (2018)

    CAS  Google Scholar 

  • Li, L., Liu, Y., Yang, X., Yu, X., Fang, Y., Li, Q., Jin, P., Tang, C.: Ambient carbon dioxide capture using boron-rich porous boron nitride: a theoretical study. ACS Appl. Mater. Interfaces 9(18), 15399–15407 (2017)

    CAS  PubMed  Google Scholar 

  • Li, W.L., Chen, Q., Tian, W.J., Bai, H., Zhao, Y.F., Hu, H.S., Li, J., Zhai, H.J., Li, S.D., Wang, L.S.: The B35 cluster with a double-hexagonal vacancy: a new and more flexible structural motif for borophene. J. Am. Chem. Soc. 136(35), 12257–12260 (2014)

    CAS  PubMed  Google Scholar 

  • Liu, X.-Q., Xue, Y., Tian, Z.-Y., Mo, J.-J., Qiu, N.-X., Chu, W., Xie, H.-P.: Adsorption of CH4 on nitrogen- and boron-containing carbon models of coal predicted by density-functional theory. Appl. Surf. Sci. 285, 190–197 (2013)

    CAS  Google Scholar 

  • Molani, F., Jalili, S., Schofield, J.: Al-doped B80 fullerene as a suitable candidate for H2, CH4, and CO2 adsorption for clean energy applications. J. Saudi. Chem. Soc. 22(1), 49–57 (2018)

    CAS  Google Scholar 

  • Nair, A.A.S., Sundara, R., Anitha, N.: Hydrogen storage performance of palladium nanoparticles decorated graphitic carbon nitride. Int. J. Hydrog. Energy 40(8), 3259–3267 (2015)

    CAS  Google Scholar 

  • Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    CAS  PubMed  Google Scholar 

  • Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865: (1996)]. Phys. Rev. Lett. 78(7), 1396–1396 (1997)

    CAS  Google Scholar 

  • Piazza, Z.A., Hu, H.-S., Li, W.-L., Zhao, Y.-F., Li, J., Wang, L.-S.: Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 5, 3113 (2014)

    PubMed  Google Scholar 

  • Grimme, S., Antony, J., Ehrlich, S., Krieg, H.: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010)

    PubMed  Google Scholar 

  • Salmasi, M., Fatemi, S., Doroudian Rad, M., Jadidi, F.: Study of carbon dioxide and methane equilibrium adsorption on silicoaluminophosphate-34 zeotype and T-type zeolite as adsorbent. Int. J. Environ. Sci. Technol. 10(5), 1067–1074 (2013)

    CAS  Google Scholar 

  • Samanta, P.N., Das, K.K.: Adsorption of CO, SO2, HCN, NH3, and H2CO on zigzag GaP nanotubes: a QM/MM study. RSC Adv. 4(103), 59056–59063 (2014)

    CAS  Google Scholar 

  • Schwinghammer, K., Tuffy, B., Mesch, M.B., Wirnhier, E., Martineau, C., Taulelle, F., Schnick, W., Jürgen, S., Lotsch, B.V.: Triazine-based carbon nitrides for visible-light-driven hydrogen evolution. Angew. Chem. Int. Ed. 52, 2435–2439 (2013)

    CAS  Google Scholar 

  • Sergeeva, A.P., Popov, I.A., Piazza, Z.A., Li, W.L., Romanescu, C., Wang, L.S., Boldyrev, A.I.: Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality. Acc. Chem. Res. 47(4), 1349–1358 (2014)

    CAS  PubMed  Google Scholar 

  • Tan, X., Kou, L., Tahini, H.A., Smith, S.C.: Conductive graphitic carbon nitride as an ideal material for electrocatalytically switchable CO2 capture. Sci. Rep. 5, 17636 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, X., Tahini, H.A., Smith, S.C.: Materials design for electrocatalytic carbon capture. APL Mater. 4, 53202–53209 (2016)

    Google Scholar 

  • Thomas, A., Fischer, A., Goettmann, F., Antonietti, M., Müller, J.-O., Schlögl, R., Carlsson, J.M.: Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. A 18(41), 4893–4908 (2008)

    CAS  Google Scholar 

  • Wang, D.H., Pan, J.N., Li, H.H., Liu, J.J., Wang, Y.B., Kang, L.T., Yao, J.N.: A pure organic heterostructure of µ-oxo dimeric iron(iii) porphyrin and graphitic-C3N4 for solar H2 roduction from water. J. Mater. Chem. A 4(1), 290–296 (2016)

    CAS  Google Scholar 

  • Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J.M., Domen, K., Antonietti, M.: A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2008)

    PubMed  Google Scholar 

  • Wang, Y., Feng, Y., Meng, G., Dong, X., Huang, X.: Methane adsorption on intrinsic, vacancy and N-doped graphene: a first-principles study. Phys. Status Solidi B 252(8), 1757–1766 (2015)

    CAS  Google Scholar 

  • Weigend, F., Ahlrichs, R.: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7(18), 3297–3305 (2005)

    CAS  PubMed  Google Scholar 

  • Yong, Y., Cui, H., Zhou, Q., Su, X., Kuang, Y., Li, X.: Adsorption of gas molecules on a graphitic GaN sheet and its implications for molecule sensors. RSC Adv. 7(80), 51027–51035 (2017)

    CAS  Google Scholar 

  • Zeleňák, V., Badaničová, M., Halamová, D., Čejka, J., Zukal, A., Murafa, N., Goerigk, G.: Amine-modified ordered mesoporous silica: effect of pore size on carbon dioxide capture. Chem. Eng. J. 144(2), 336–342 (2008)

    Google Scholar 

  • Zhai, H.J., Kiran, B., Li, J., Wang, L.S.: Hydrocarbon analogues of boron clusters—planarity, aromaticity and antiaromaticity. Nat. Mater. 2(12), 827–833 (2003)

    CAS  PubMed  Google Scholar 

  • Zhu, J., Wei, Y., Chen, W., Zhao, Z., Thomas, A.: Graphitic carbon nitride as a metal-free catalyst for NO decomposition. Chem. Commun. 46(37), 6965–6967 (2010)

    CAS  Google Scholar 

  • Zhu, J., Wei, Y., Chen, W., Zhao, Z., Thomas, A.: Graphitic carbon nitride as a metal-free catalyst for NO decomposition. Chem. Commun. 46(37), 6965–6967 (2010b)

    CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by CONACYT. M.I.R. thanks for the postdoctoral scholarship from CONACYT.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marisol Ibarra-Rodríguez or Mario Sánchez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1 (DOCX 1665 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibarra-Rodríguez, M., Sánchez, M. Graphitic carbon nitride functionalized with four boron atoms for adsorption and separation of CO2/CH4: DFT calculations. Adsorption 26, 597–605 (2020). https://doi.org/10.1007/s10450-020-00233-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-020-00233-4

Keyword

Navigation