Skip to main content
Log in

Artefact peaks of pore size distributions caused by unclosed sorption isotherm and tensile strength effect

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The pore size distribution (PSD) is an important property of the porous materials, but an accurate and reliable PSD is very difficult to obtain. Quenched Solid Density Functional Theory (QSDFT) is widely used to analyze the pore size distribution. Here, a series of unclosed and closed isotherms of activated carbon were measured and compared. The experimental results revealed the appearance of an artefact peak in the PSD for the unclosed isotherms by employing QSDFT equilibrium model. Moreover, the location of the artificial peak is highly related to the end point of the desorption branch. In addition, tensile strength effect (TSE) illustrates the limit of mechanical stability of liquids in pores, and subsequent cavitation generates an artefact peak at around 2.8 nm. Interestingly, it was found that isotherm data associated with TSE can be used to calculate the total pore volume of all large cavities in which cavitation occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bailey, A., Cadenhead, D.A., Davies, D.H., Everett, D.H., Miles, A.J.: Low pressure hysteresis in the adsorption of organic vapours by porous carbons. T. Faraday Soc. 67, 231–243 (1971)

    CAS  Google Scholar 

  • Barrett, E.P., Joyner, L.G., Halenda, P.P.: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73(1), 373–380 (1951)

    CAS  Google Scholar 

  • Bergaoui, M., Aguir, C., Khalfaoui, M., Villarroel-Rocha, J., Reinert, L., Enciso, E., Duclaux, L., Barrera, D., Sapag, K.: On the computer simulations of carbon nanoparticles porosity: statistical mechanics model for CO2 and N2 adsorption isotherms. Adsorption 24(8), 769–779 (2018)

    CAS  Google Scholar 

  • Burgess, C.G.V., Everett, D.H.: The lower closure point in adsorption hysteresis of the capillary condensation type. J. Colloid Interface Sci. 33(4), 611–614 (1970)

    CAS  Google Scholar 

  • Chmiola, J., Yushin, G., Gogotsi, Y., Portet, C., Simon, P., Taberna, P.L.: Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313(5794), 1760–1763 (2006)

    CAS  PubMed  Google Scholar 

  • Coasne, B.: Multiscale adsorption and transport in hierarchical porous materials. New J. Chem. 40(5), 4078–4094 (2016)

    CAS  Google Scholar 

  • Cychosz, K.A., Guillet-Nicolas, R., Garcia-Martinez, J., Thommes, M.: Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chem. Soc. Rev. 46(2), 389–414 (2017)

    CAS  PubMed  Google Scholar 

  • Cychosz, K.A., Thommes, M.: Progress in the physisorption characterization of nanoporous gas storage materials. Engineering 4(4), 559–566 (2018)

    CAS  Google Scholar 

  • Gane, P.A.C., Ridgway, C.J., Lehtinen, E., Valiullin, R., Furó, I., Schoelkopf, J., Paulapuro, H., Daicic, J.: Comparison of NMR cryoporometry, mercury intrusion porosimetry, and DSC thermoporosimetry in characterizing pore size distributions of compressed finely ground calcium carbonate structures. Ind. Eng. Chem. Res. 43(24), 7920–7927 (2004)

    CAS  Google Scholar 

  • Gelb, L.D., Gubbins, K.E.: Characterization of porous glasses: simulation models, adsorption isotherms, and the Brunauer–Emmett–Teller analysis method. Langmuir 14(8), 2097–2111 (1998)

    CAS  Google Scholar 

  • Gor, G.Y., Thommes, M., Cychosz, K.A., Neimark, A.V.: Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption. Carbon 50(4), 1583–1590 (2012)

    CAS  Google Scholar 

  • Gregg, S.J., Sing, K.S.W.: Adsorption, surface area and porosity. Academic Press, London (1982)

    Google Scholar 

  • Groen, J.C., Peffer, L.A.A., Pérez-Ramı́rez, J.: Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater. 60(1–3), 1–17 (2003)

    CAS  Google Scholar 

  • Hirotani, A., Mizukami, K., Miura, R., Takaba, H., Miya, T., Fahmi, A., Stirling, A., Kubo, M., Miyamoto, A.: Grand canonical Monte Carlo simulation of the adsorption of CO2 on silicalite and NaZSM-5. Appl. Surf. Sci. 120(1), 81–84 (1997)

    CAS  Google Scholar 

  • Horvath, G., Kawazoe, K.: Method for the calculation of effective pore size distribution in molecular sieve carbon. J. Chem. Eng. Jpn. 16(6), 470–475 (1983)

    CAS  Google Scholar 

  • Jagiello, J., Olivier, J.P.: 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon 55, 70–80 (2013)

    CAS  Google Scholar 

  • Jagiello, J., Thommes, M.: Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions. Carbon 42(7), 1227–1232 (2004)

    CAS  Google Scholar 

  • Jahandar Lashaki, M., Atkinson, J.D., Hashisho, Z., Phillips, J.H., Anderson, J.E., Nichols, M.: The role of beaded activated carbon's pore size distribution on heel formation during cyclic adsorption/desorption of organic vapors. J. Hazard. Mater. 315, 42–51 (2016)

    CAS  PubMed  Google Scholar 

  • Kadlec, O., Dubinin, M.M.: Comments on the limits of applicability of the mechanism of capillary condensation. J. Colloid Interface Sci. 31(4), 479–489 (1969)

    CAS  Google Scholar 

  • Kwiatkowski, M., Fierro, V., Celzard, A.: Confrontation of various adsorption models for assessing the porous structure of activated carbons. Adsorption 25(8), 1673–1682 (2019)

    CAS  Google Scholar 

  • Landers, J., Gor, G.Y., Neimark, A.V.: Density functional theory methods for characterization of porous materials. Colloids Surf. A 437, 3–32 (2013)

    CAS  Google Scholar 

  • Langmuir, I.: The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 38(11), 2221–2295 (1916)

    CAS  Google Scholar 

  • Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361–1403 (1918)

    CAS  Google Scholar 

  • Lowell, S., Shields, J.E., Thomas, M.A., Thommes, M.: Characterization of porous solids and powders: surface area, pore size and density. Kluwer Academic Publishers, Dordrecht (2004)

    Google Scholar 

  • Lu, S., Jin, M., Zhang, Y., Niu, Y., Gao, J., Li, C.: Chemically exfoliating biomass into a graphene-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors. Adv. Energy Mater. 8(11), 1702545 (2018)

    Google Scholar 

  • Maddox, M.W., Quirke, N., Gubbins, K.E.: A molecular simulation study of pore networking effects. Mol. Simulat. 19(5–6), 267–283 (1997)

    CAS  Google Scholar 

  • Méndez-Morales, T., Ganfoud, N., Li, Z., Haefele, M., Rotenberg, B., Salanne, M.: Performance of microporous carbon electrodes for supercapacitors: comparing graphene with disordered materials. Energy Storage Mater. 17, 88–92 (2019)

    Google Scholar 

  • Meng, X., Wang, H.N., Song, S.Y., Zhang, H.J.: Proton-conducting crystalline porous materials. Chem. Soc. Rev. 46(2), 464–480 (2017)

    CAS  PubMed  Google Scholar 

  • Nguyen, P.T.M., Do, D.D., Nicholson, D.: Pore connectivity and hysteresis in gas adsorption: a simple three-pore model. Colloids Surf. A 437, 56–68 (2013a)

    CAS  Google Scholar 

  • Nguyen, P.T.M., Fan, C., Do, D.D., Nicholson, D.: On the cavitation-like pore blocking in ink-bottle pore: evolution of hysteresis loop with neck size. J. Phys. Chem. C 117(10), 5475–5484 (2013b)

    CAS  Google Scholar 

  • Olivier, J.P.: Improving the models used for calculating the size distribution of micropore volume of activated carbons from adsorption data. Carbon 36(10), 1469–1472 (1998)

    CAS  Google Scholar 

  • Prehal, C., Koczwara, C., Jäckel, N., Schreiber, A., Burian, M., Amenitsch, H., Hartmann, M.A., Presser, V., Paris, O.: Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering. Nat. Energy 2(3), 1–8 (2017)

    Google Scholar 

  • Puziy, A.M., Poddubnaya, O.I., Gawdzik, B., Sobiesiak, M.: Comparison of heterogeneous pore models QSDFT and 2D-NLDFT and computer programs ASiQwin and SAIEUS for calculation of pore size distribution. Adsorption 22(4–6), 459–464 (2016)

    CAS  Google Scholar 

  • Rasmussen, C.J., Vishnyakov, A., Thommes, M., Smarsly, B.M., Kleitz, F., Neimark, A.V.: Cavitation in metastable liquid nitrogen confined to nanoscale pores. Langmuir 26(12), 10147–10157 (2010)

    CAS  PubMed  Google Scholar 

  • Ravikovitch, P.I., Neimark, A.V.: Characterization of micro- and mesoporosity in SBA-15 materials from adsorption data by the NLDFT method. J. Phys. Chem. B 105(29), 6817–6823 (2001)

    CAS  Google Scholar 

  • Ravikovitch, P.I., Neimark, A.V.: Density functional theory of adsorption in spherical cavities and pore size characterization of templated nanoporous silicas with cubic and three-dimensional hexagonal structures. Langmuir 18(5), 1550–1560 (2002a)

    CAS  Google Scholar 

  • Ravikovitch, P.I., Neimark, A.V.: Experimental confirmation of different mechanisms of evaporation from ink-bottle type pores: equilibrium, pore blocking, and cavitation. Langmuir 18(25), 9830–9837 (2002b)

    CAS  Google Scholar 

  • Ravikovitch, P.I., Neimark, A.V.: Density functional theory model of adsorption on amorphous and microporous silica materials. Langmuir 22(26), 11171–11179 (2006)

    CAS  PubMed  Google Scholar 

  • Ravikovitch, P.I., Domhnaill, S.Ó., Neimark, A.V., Schüth, F., Unger, K.K.: Capillary hysteresis in nanopores theoretical and experimental studies of nitrogen adsorption on MCM-41. Langmuir 11(2), 4765–4772 (1995)

    CAS  Google Scholar 

  • Ravikovitch, P.I., Vishnyakov, A., Russo, R., Neimark, A.V.: Unified approach to pore size characterization of microporous carbonaceous materials from N2, Ar, and CO2 adsorption isotherms. Langmuir 16(5), 2311–2320 (2000)

    CAS  Google Scholar 

  • Reber, M.J., Bruhwiler, D.: Bimodal mesoporous silica with bottleneck pores. Dalton T. 44(41), 17960–17967 (2015)

    CAS  Google Scholar 

  • Reichenbach, C., Kalies, G., Enke, D., Klank, D.: Cavitation and pore blocking in nanoporous glasses. Langmuir 27(17), 10699–10704 (2011)

    CAS  PubMed  Google Scholar 

  • Saam, W.F., Cole, M.W.: Excitations and thermodynamics for liquid-helium films. Phys. Rev. B 11(3), 1086–1105 (1975)

    CAS  Google Scholar 

  • Saito, A., Foley, H.C.: Curvature and parametric sensitivity in models for adsorption in micropores. Aiche J. 37(3), 429–436 (1991)

    CAS  Google Scholar 

  • Saito, A., Foley, H.C.: Argon porosimetry of selected molecular sieves: experiments and examination of the adapted Horvath–Kawazoe model. Microporous Mater. 3(4), 531–542 (1995)

    CAS  Google Scholar 

  • Sarkisov, L., Monson, P.A.: Modeling of adsorption and desorption in pores of simple geometry using molecular dynamics. Langmuir 17(24), 7600–7604 (2001)

    CAS  Google Scholar 

  • Shao, J., Song, M., Wu, G., Zhou, Y., Wan, J., Ren, X., Ma, F.: 3D carbon nanocage networks with multiscale pores for high-rate supercapacitors by flower-like template and in-situ coating. Energy Storage Mater. 13, 57–65 (2018)

    Google Scholar 

  • Sing, K.S., Williams, R.T.: Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt. Sci. Technol. 22(10), 773–782 (2004a)

    CAS  Google Scholar 

  • Sing, K.S.W., Williams, R.T.: The use of molecular probes for the characterization of nanoporous adsorbents. Part. Part. Syst. Char. 21(2), 71–79 (2004b)

    CAS  Google Scholar 

  • Sing, K.S.W., Rouquerol, F., Rouquerol, J., Llewellyn, P.: Adsorption by powders and porous solids (2ed). Academic Press, Oxford (2014)

    Google Scholar 

  • Smarsly, B., Thommes, M., Ravikovitch, P.I., Neimark, A.V.: Characterization of worm-like micro- and mesoporous silicas by small-angle scattering and high-resolution adsorption porosimetry. Adsorption 11(1), 653–655 (2005)

    Google Scholar 

  • Sonwane, C.G., Bhatia, S.K.: Adsorption in mesopores: a molecular-continuum model with application to MCM-41. Chem. Eng. Sci. 53(17), 3143–3156 (1998)

    CAS  Google Scholar 

  • Steele, W.: Computer simulations of physical adsorption: a historical review. Appl. Surf. Sci. 196(1), 3–12 (2002)

    CAS  Google Scholar 

  • Stephen, B., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)

    Google Scholar 

  • Storck, S., Bretinger, H., Maier, W.F.: Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis. Appl. Catal. A-Gen 174(1–2), 137–146 (1998)

    CAS  Google Scholar 

  • Tarazona, P.: Free-energy density functional for hard spheres. Phys. Rev. A 31(4), 2672–2679 (1985)

    CAS  Google Scholar 

  • Tarazona, P., Marconi, U.M.B., Evans, R.: Phase equilibria of fluid interfaces and confined fluids. Mol. Phys. 60(3), 573–595 (1987)

    CAS  Google Scholar 

  • Thommes, M.: Physical adsorption characterization of nanoporous materials. Chem. Ing. Tech. 82(7), 1059–1073 (2010)

    CAS  Google Scholar 

  • Thommes, M., Smarsly, B., Groenewolt, M., Ravikovitch, P.I., Neimark, A.V.: Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro- and mesoporous silicas. Langmuir 22(2), 756–764 (2006)

    CAS  PubMed  Google Scholar 

  • Vuong, T., Monson, P.A.: Monte carlo simulation studies of heats of adsorption in heterogeneous solids. Langmuir 12(22), 5425–5432 (1996)

    CAS  Google Scholar 

  • Walton, J.P.R.B., Quirke, N.: Capillary condensation: a molecular simulation study. Mol. Simulat. 2(4–6), 361–391 (1989)

    Google Scholar 

  • Wang, Y., Xia, Y.: Recent progress in supercapacitors: from materials design to system construction. Adv. Mater. 25(37), 5336–5342 (2013)

    CAS  PubMed  Google Scholar 

  • Wang, C., Wang, X., Lu, H., Li, H., Zhao, X.S.: Cellulose-derived hierarchical porous carbon for high-performance flexible supercapacitors. Carbon 140, 139–147 (2018)

    CAS  Google Scholar 

  • Wongkoblap, A., Intomya, W., Somrup, W., Charoensuk, S., Junpirom, S., Tangsathitkulchai, C.: Pore size distribution of carbon with different probe molecules. Eng. J. 14(3), 45–56 (2010)

    Google Scholar 

  • Xia, K., Gao, Q., Jiang, J., Hu, J.: Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon 46(13), 1718–1726 (2008)

    CAS  Google Scholar 

  • Young, C., Lin, J., Wang, J., Ding, B., Zhang, X., Alshehri, S.M., Ahamad, T., Salunkhe, R.R., Hossain, S.A., Khan, J.H., Ide, Y., Kim, J., Henzie, J., Wu, K.C., Kobayashi, N., Yamauchi, Y.: Significant effect of pore sizes on energy storage in nanoporous carbon supercapacitors. Chem. Eur. J. 24(23), 6127–6132 (2018)

    CAS  PubMed  Google Scholar 

  • Zhu, G., Chen, T., Wang, L., Ma, L., Hu, Y., Chen, R., Wang, Y., Wang, C., Yan, W., Tie, Z., Liu, J., Jin, Z.: High energy density hybrid lithium-ion capacitor enabled by Co3ZnC@N-doped carbon nanopolyhedra anode and microporous carbon cathode. Energy Storage Mater. 14, 246–252 (2018)

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Hainan Provincial Natural Science Foundation of China (2018CXTD332 and HD-SYSZX-201802), Science and Technology Development Special Fund Project (ZY2018HN09-3 and ZY2019HN09), National Natural Science Foundation of China (Nos. 51362009 and 21603048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, W., Yang, S., Jiang, Y. et al. Artefact peaks of pore size distributions caused by unclosed sorption isotherm and tensile strength effect. Adsorption 26, 633–644 (2020). https://doi.org/10.1007/s10450-020-00228-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-020-00228-1

Keywords

Navigation