Skip to main content
Log in

Modeling and simulation of ice–water interactions by coupling peridynamics with updated Lagrangian particle hydrodynamics

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

In this work, a coupling method between the bond-based peridynamics model for solids and the updated Lagrangian particle hydrodynamics (ULPH) model of fluids is developed to simulate interaction between ice and seawater. The ULPH (Tu and Li in J Comput Phys 348:495–513, 2017) is the latest development of using non-local differential operators to model Navier–Stokes equations of Newtonian fluids, which has the advantages to preserve the consistency with partial differential equations and second-order accuracy in spatial gradient interpolation. On the other hand, we model the ice-like materials by using the bond-based peridynamics, which formulates equations of motions in terms of integro-differential equations instead of partial differential equations. For demonstration purpose, the numerical solution of a rigid ball impacting an ice plate floating in calm water is presented. The results obtained have shown the versatility as well as the accuracy of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Huera-Huarte FJ, Jeon D, Gharib M (2011) Experimental investigation of water slamming loads on panels. Ocean Eng 38(11–12):1347–1355

    Google Scholar 

  2. Lubbad R, Løset S (2011) A numerical model for real-time simulation of ship-ice interaction. Cold Reg Sci Technol 65(2):111–127

    Google Scholar 

  3. Pérez-Collazo C, Greaves D, Iglesias G (2015) A review of combined wave and offshore wind energy. Renew Sustain Energy Rev 42:141–153

    Google Scholar 

  4. He T, Zhou D, Bao Y (2012) Combined interface boundary condition method for fluid-rigid body interaction. Comput Methods Appl Mech Eng 223:81–102

    MathSciNet  MATH  Google Scholar 

  5. Wei Z, Hu C (2014) An experimental study on water entry of horizontal cylinders. J Mar Sci Technol 19(3):338–350

    MathSciNet  Google Scholar 

  6. Wei Z, Hu C (2015) Experimental study on water entry of circular cylinders with inclined angles. J Mar Sci Technol 20(4):722–738

    Google Scholar 

  7. Sun P, Ming F, Zhang A (2015) Numerical simulation of interactions between free surface and rigid body using a robust SPH method. Ocean Eng 98:32–49

    Google Scholar 

  8. Korobkin A (2004) Analytical models of water impact. Eur J Appl Math 15(6):821–838

    MathSciNet  MATH  Google Scholar 

  9. Sun P, Zhang A, Marrone S, Ming F (2018) An accurate and efficient SPH modeling of the water entry of circular cylinders. Appl Ocean Res 72(1):60–75

    Google Scholar 

  10. Kim W, Choi H (2019) Immersed boundary methods for fluid-structure interaction: a review. Int J Heat Fluid Flow 75:301–309

    Google Scholar 

  11. Tezduyar TE, Behr M, Mittal S, Liou J (1992) boundaries and interfaces–theA new strategy for finite element computations involving moving deforming-spatial-domain/space-time procedure: Ii. computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94(3):353–371

    MATH  Google Scholar 

  12. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid-structure interactions with the deforming-spatial-domain/stabilized space-time formulation. Comput Methods Appl Mech Eng 195(13–16):1885–1895

    MathSciNet  MATH  Google Scholar 

  13. Zhang J, Qian X, Zhang H, Liu Z (2018) Fluid-structure interaction simulation of aqueous outflow system in response to juxtacanalicular meshwork permeability changes with a two-way coupled method. CMES: Comput Model Eng Sci 116(2):301–314

    Google Scholar 

  14. Hirt CW, Amsden AA, Cook JL (1974) An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J Comput Phys 14(3):227–253

    MATH  Google Scholar 

  15. Donea J, Giuliani S, Halleux J-P (1982) An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput Methods Appl Mech Eng 33(1–3):689–723

    MATH  Google Scholar 

  16. Takashi N, Hughes TJR (1992) An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body. Comput Methods Appl Mech Eng 95(1):115–138

    MATH  Google Scholar 

  17. Kuhl E, Hulshoff S, De Borst R (2003) An arbitrary Lagrangian Eulerian finite-element approach for fluid-structure interaction phenomena. Int J Numer Meth Eng 57(1):117–142

    MATH  Google Scholar 

  18. Basting S, Quaini A, Čanić S, Glowinski R (2017) Extended ale method for fluid-structure interaction problems with large structural displacements. J Comput Phys 331:312–336

    MathSciNet  MATH  Google Scholar 

  19. Mhamed S, Du Bois P, Al-Bahkali E (2018) Numerical shock viscosity for impact analysis using ale formulation. CMES: Comput Model Eng Sci 117(1):91–107

    Google Scholar 

  20. Peskin CS (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10(2):252–271

    MathSciNet  MATH  Google Scholar 

  21. Sotiropoulos F, Yang X (2014) Immersed boundary methods for simulating fluid-structure interaction. Prog Aerosp Sci 65:1–21

    Google Scholar 

  22. Leveque RJ, Li Z (1994) The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J Numer Anal 31(4):1019–1044

    MathSciNet  MATH  Google Scholar 

  23. Kim K-S, Kim M-H, Jang H, Cho H-C (2018) Simulation of solid particle interactions including segregated lamination by using mps method. CMES: Comput Model Eng Sci 116:11–29

    Google Scholar 

  24. Udaykumar HS, Shyy W, Rao MM (1996) Elafint: a mixed Eulerian-Lagrangian method for fluid flows with complex and moving boundaries. Int J Numer Meth Fluids 22(8):691–712

    MathSciNet  MATH  Google Scholar 

  25. Ye T, Mittal R, Udaykumar HS, Shyy W (1999) An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. J Comput Phys 156(2):209–240

    MathSciNet  MATH  Google Scholar 

  26. Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, vol 3. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  27. Dunne T (2006) An Eulerian approach to fluid-structure interaction and goal-oriented mesh adaptation. Int J Numer Meth Fluids 51(9–10):1017–1039

    MathSciNet  MATH  Google Scholar 

  28. Fedkiw RP, Aslam T, Merriman B, Osher S (1999) A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J Comput Phys 152(2):457–492

    MathSciNet  MATH  Google Scholar 

  29. Fedkiw RP (2002) Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method. J Comput Phys 175(1):200–224

    MathSciNet  MATH  Google Scholar 

  30. Hou G, Wang J, Layton A (2012) Numerical methods for fluid-structure interaction—a review. Commun Comput Phys 12(2):337–377

    MathSciNet  MATH  Google Scholar 

  31. Li S, Liu W-K (2002) Meshfree particle methods and their applications. Appl Mech Rev 53:1–34

    Google Scholar 

  32. Li S, Liu WK (2007) Meshfree particle methods. Springer Science & Business Media, New York

    MATH  Google Scholar 

  33. Bouscasse B, Colagrossi A, Marrone S, Antuono M (2013) Nonlinear water wave interaction with floating bodies in SPH. J Fluids Struct 42:112–129

    Google Scholar 

  34. Monaghan JJ, Kos A (2000) Scott Russell’s wave generator. Phys Fluids 12(3):622–630

    MathSciNet  MATH  Google Scholar 

  35. Koshizuka S, Nobe A, Oka Y (1998) Numerical analysis of breaking waves using the moving particle semi-implicit method. Int J Numer Meth Fluids 26(7):751–769

    MATH  Google Scholar 

  36. Shao S, Gotoh H (2004) Simulating coupled motion of progressive wave and floating curtain wall by SPH-LES model. Coast Eng J 46(02):171–202

    Google Scholar 

  37. Skillen A, Lind S, Stansby PK, Rogers BD (2013) Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised Fickian smoothing applied to body-water slam and efficient wave-body interaction. Comput Methods Appl Mech Eng 265:163–173

    MathSciNet  MATH  Google Scholar 

  38. Cheng H, Ming FR, Sun PN, Wang PP, Zhang AM (2019) Towards the modeling of the ditching of a ground-effect wing ship within the framework of the SPH method. Appl Ocean Res 82:370–384

    Google Scholar 

  39. Oger G, Doring M, Alessandrini B, Ferrant P (2006) Two-dimensional SPH simulations of wedge water entries. J Comput Phys 213(2):803–822

    MathSciNet  MATH  Google Scholar 

  40. Ulrich C, Rung T (2012) Multi-physics SPH simulations of launching problems and floating body interactions. In: ASME 2012 31st international conference on ocean, offshore and arctic engineering, pp 685–694. American Society of Mechanical Engineers

  41. Omidvar P, Stansby PK, Rogers BD (2013) Sph for 3D floating bodies using variable mass particle distribution. Int J Numer Meth Fluids 72(4):427–452

    MathSciNet  Google Scholar 

  42. Kajtar J, Monaghan JJ (2008) SPH simulations of swimming linked bodies. J Comput Phys 227(19):8568–8587

    MathSciNet  MATH  Google Scholar 

  43. Hashemi MR, Fatehi R, Manzari MT (2012) A modified SPH method for simulating motion of rigid bodies in Newtonian fluid flows. Int J Non-Linear Mech 47(6):626–638

    Google Scholar 

  44. Geller S, Tölke J, Krafczyk M (2006) Lattice-Boltzmann method on quadtree-type grids for fluid-structure interaction. In: Fluid-structure interaction. Springer, New York, pp 270–293

  45. De Rosis A, Falcucci G, Ubertini S, Ubertini F, Succi S (2013) Lattice Boltzmann analysis of fluid-structure interaction with moving boundaries. Commun Comput Phys 13(3):823–834

    MATH  Google Scholar 

  46. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209

    MathSciNet  MATH  Google Scholar 

  47. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88(2):151–184

    MathSciNet  MATH  Google Scholar 

  48. Wang Q, Wang Y, Zan Y, Lu W, Bai X, Guo J (2018) Peridynamics simulation of the fragmentation of ice cover by blast loads of an underwater explosion. J Mar Sci Technol 23(1):52–66

    Google Scholar 

  49. Liu M, Wang Q, Lu W (2017) Peridynamic simulation of brittle-ice crushed by a vertical structure. Int J Naval Archit Ocean Eng 9(2):209–218

    Google Scholar 

  50. Ye LY, Wang C, Chang X, Zhang HY (2017) Propeller-ice contact modeling with peridynamics. Ocean Eng 139:54–64

    Google Scholar 

  51. Liu RW, Xue YZ, Lu XK, Cheng WX (2018) Simulation of ship navigation in ice rubble based on peridynamics. Ocean Eng 148:286–298

    Google Scholar 

  52. Tong Q, Li S (2016) Multiscale coupling of molecular dynamics and peridynamics. J Mech Phys Solids 95:169–187

    MathSciNet  Google Scholar 

  53. Han D, Zhang Y, Wang Q, Lu W, Jia B (2018) The review of the bond-based peridynamics modeling. J Micromech Mole Phys, pp 1830001

    Google Scholar 

  54. Tu Q, Li S (2017) An updated Lagrangian particle hydrodynamics (ULPH) for Newtonian fluids. J Comput Phys 348:493–513

    MathSciNet  MATH  Google Scholar 

  55. Yan J, Li S, Zhang A, Kan X, Sun P-N (2019) Updated Lagrangian particle hydrodynamics (ULPH) modeling and simulation of multiphase flows. J Comput Phys 393:406–437

    MathSciNet  Google Scholar 

  56. Silling SA, Parks ML, Kamm JR, Weckner O, Rassaian M (2017) Modeling shockwaves and impact phenomena with Eulerian peridynamics. Int J Impact Eng 107:47–57

    Google Scholar 

  57. Madenci E, Oterkus E (2014) Peridynamic theory and its applications, vol 17. Springer, New York

    MATH  Google Scholar 

  58. Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83(17–18):1526–1535

    Google Scholar 

  59. Parks ML, Littlewood DJ, Mitchell JA, Silling SA (2012) Peridigm users’ guide v1. 0.0. SAND Report, 7800

  60. Littlewood D (2016) Roadmap for software implementation. Handbook of peridynamic modeling. Chapman and Hall/CRC, New York, pp 147–178

    Google Scholar 

  61. Fan H, Li S (2017) A peridynamics-SPH modeling and simulation of blast fragmentation of soil under buried explosive loads. Comput Methods Appl Mech Eng 318:349–381

    MathSciNet  Google Scholar 

  62. Hu Y, Chen H, Spencer BW, Madenci E (2018) Thermomechanical peridynamic analysis with irregular non-uniform domain discretization. Eng Fract Mech 197:92–113

    Google Scholar 

  63. Lapidus L, Pinder GF (2011) Numerical solution of partial differential equations in science and engineering. Wiley, New York

    MATH  Google Scholar 

  64. Liu W, Hong JW (2012) Discretized peridynamics for linear elastic solids. Comput Mech 50(5):579–590

    MathSciNet  MATH  Google Scholar 

  65. Chorin AJ, Marsden JE (1990) A mathematical introduction to fluid mechanics, vol 3. Springer, New York

    MATH  Google Scholar 

  66. Zienkiewicz OC (1977) The finite element method, vol 3. McGraw-Hill, London

    MATH  Google Scholar 

  67. Colagrossi A, Souto-Iglesias A, Antuono M, Marrone S (2013) Smoothed-particle-hydrodynamics modeling of dissipation mechanisms in gravity waves. Phys Rev E 87(2):023302

    Google Scholar 

  68. Colagrossi A, Landrini M (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J Comput Phys 191(2):448–475

    MATH  Google Scholar 

  69. Bergel GL, Li S (2016) The total and updated Lagrangian formulation of state-based peridynamics. Comput Mech 58:351–370

    MathSciNet  MATH  Google Scholar 

  70. Bergel GL, Li S (2016) The total and updated Lagrangian formulations of state-based peridynamics. Comput Mech 58(2):351–370

    MathSciNet  MATH  Google Scholar 

  71. Molteni D, Colagrossi A (2009) A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH. Comput Phys Commun 180(6):861–872

    MathSciNet  MATH  Google Scholar 

  72. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406

    MATH  Google Scholar 

  73. Chen Z, Zong Z, Liu MB, Zou L, Li HT, Shu C (2015) An SPH model for multiphase flows with complex interfaces and large density differences. J Comput Phys 283:169–188

    MathSciNet  MATH  Google Scholar 

  74. Ming FR, Zhang AM, Cheng H, Sun PN (2018) Numerical simulation of a damaged ship cabin flooding in transversal waves with smoothed particle hydrodynamics method. Ocean Eng 165:336–352

    Google Scholar 

  75. Adami S, Hu XY, Adams NA (2012) A generalized wall boundary condition for smoothed particle hydrodynamics. J Comput Phys 231(21):7057–7075

    MathSciNet  Google Scholar 

  76. Monaghan JJ, Kos A, Issa N (2003) Fluid motion generated by impact. J Waterway Port Coast Ocean Eng 129(6):250–259

    Google Scholar 

  77. Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68(8):1703

    MathSciNet  MATH  Google Scholar 

  78. Gómez-Gesteira M, Rogers BD, Dalrymple RA, Crespo AJC, Narayanaswamy M (2010) User guide for the SPHysics code v2. 0. SPHysics (http://www.sphysics.org)

  79. Hedayati E, Vahedi M (2017) Numerical investigation of penetration in ceramic/aluminum targets using smoothed particle hydrodynamics method and presenting a modified analytical model. CMES: Comput Model Eng Sci 113(3):295–323

    Google Scholar 

  80. Lai X, Liu L, Li S, Zeleke M, Liu Q, Wang Z (2018) A non-ordinary state-based peridynamics modeling of fractures in quasi-brittle materials. Int J Impact Eng 111:130–146

    Google Scholar 

  81. Cui P, Zhang A-M, Wang S, Khoo BC (2018) Ice breaking by a collapsing bubble. J Fluid Mech 841:287–309

    MATH  Google Scholar 

  82. Song Y, Yu H, Zhuang K (2018) Numerical study on ice fragmentation by impact based on non-ordinary state-based peridynamics. J Micromech Molecular Phys 4:1850006

    Google Scholar 

Download references

Acknowledgements

This work is performed at the Department of Civil and Environmental Engineering at the University of California, Berkeley. Mr. R. Liu and Mr. J. Yan are supported by the visiting PhD student fellowships from China Scholar Council (CSC). These supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaofan Li.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests in this research among all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Yan, J. & Li, S. Modeling and simulation of ice–water interactions by coupling peridynamics with updated Lagrangian particle hydrodynamics. Comp. Part. Mech. 7, 241–255 (2020). https://doi.org/10.1007/s40571-019-00268-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-019-00268-7

Keywords

Navigation