Skip to main content
Log in

Effects of contact angle hysteresis on drop manipulation using surface acoustic waves

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Surface acoustic waves have gained much attention in flow control given the effects arising from acoustic streaming. In this study, the hydrodynamic interference of a drop under surface acoustic waves is comprehensively investigated and the contact angle hysteresis effects are considered, too. This paper reveals the effects of some control parameters such as wave amplitude and wave frequency on the dynamical behaviors of drop. For these purposes, a multiple-relaxation-time color-gradient model lattice Boltzmann method is developed. In these case studies, wave frequency and amplitude were in the ranges of 20–60 MHz and 0.5–2 nm, respectively. In addition, the density ratio of 1000, the kinematic viscosity ratio of 15, Reynolds numbers of 4–24, Capillary numbers of 0.0003–0.0008 and Weber numbers of 0–0.4 were considered. Results show that drop would not move, but would incline in the direction of wave propagation equal to radiation angle when the wave amplitude is low. However, the drop will initiate to move as wave amplitude is progressively augmented. Meanwhile, the increase in frequency leads to an increment of required power to change the modes of the system from streaming to pumping or jetting states. The obtained results clearly show that a reduction in viscosity and an increase in surface tension coefficient significantly influence the flow control system and enhance its sensitivity. Also, the contact angle hysteresis modeling can improve the numerical results by up to 20%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Skafte-Pedersen, P.: Acoustic forces on particles and liquids in microfluidic systems. Doctoral dissertation, Master’s thesis, Technical University of Denmark (2008)

  2. Muller, P.B.: Acoustofluidics in microsystems: investigation of acoustic streaming. Master’s thesis, DTU Nanotech, Department of Micro-and Nanotechnology. Mar 12 (2012)

  3. Yu, H., Kim, E.S.: Noninvasive acoustic-wave microfluidic driver. In: Micro Electro Mechanical Systems. The Fifteenth IEEE International Conference on 2002 Jan 24, pp. 125–128. IEEE (2002)

  4. Petersson, F., Nilsson, A., Holm, C., Jönsson, H., Laurell, T.: Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces. Lab. Chip 5(1), 20–2 (2005)

    Google Scholar 

  5. Jang, L.S., Chao, S.H., Holl, M.R., Meldrum, D.R.: Resonant mode-hopping micromixing. Sens. Actuators A 138(1), 179–86 (2007)

    Google Scholar 

  6. Nguyen, N.T., Wereley, S.T., Wereley, S.T.: Fundamentals and applications of microfluidics. Artech house (2002)

  7. Nyborg, W.L.: Acoustic streaming due to attenuated plane waves. J. Acoust. Soc. Am. 25(1), 68–75 (1953)

    MathSciNet  Google Scholar 

  8. Lighthill, J.: Acoustic streaming. J. Sound Vib. 61(5), 391–418 (1978)

    MATH  Google Scholar 

  9. Yeo, L.Y., Friend, J.R.: Surface acoustic wave microfluidics. Annu. Rev. Fluid Mech. 3(46), 379–406 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Ding, X., Li, P., Lin, S.C., Stratton, Z.S., Nama, N., Guo, F., Slotcavage, D., Mao, X., Shi, J., Costanzo, F., Huang, T.J.: Surface acoustic wave microfluidics. Lab. Chip 13(20), 3626–49 (2013)

    Google Scholar 

  11. Shilton, R.J., Travagliati, M., Beltram, F., Cecchini, M.: Nanoliter-droplet acoustic streaming via ultra-high frequency surface acoustic waves. Adv. Mater. 26(37), 4941–6 (2014)

    Google Scholar 

  12. Sritharan, K., Strobl, C.J., Schneider, M.F., Wixforth, A., Guttenberg, Z.V.: Acoustic mixing at low Reynolds numbers. Appl. Phys. Lett. 88(7), 054102 (2006)

    Google Scholar 

  13. Wixforth, A., Strobl, C., Gauer, C., Toegl, A., Scriba, J., Guttenberg, Z.V.: Acoustic manipulation of small droplets. Anal. Bioanal. Chem. 379(7–8), 982–91 (2004)

    Google Scholar 

  14. Shiokawa, S., Matsui, Y., Ueda, T.: Liquid streaming and droplet formation caused by leaky Rayleigh waves. In: Proceedings, IEEE Ultrasonic Symposium, Oct 3, pp. 643–646. IEEE (1989)

  15. Valverde, J.M.: Convection and fluidization in oscillatory granular flows: the role of acoustic streaming. Eur. Phys. J. E 38(8), 66 (2015)

    Google Scholar 

  16. Brunet, P., Baudoin, M., Matar, O.B., Zoueshtiagh, F.: Droplet displacements and oscillations induced by ultrasonic surface acoustic waves: a quantitative study. Phys. Rev. E 81(5), 036315 (2010)

    Google Scholar 

  17. Tan, M.K., Yeo, L.Y., Friend, J.R.: Rapid fluid flow and mixing induced in microchannels using surface acoustic waves. EPL (Europhys. Lett.) 87(6), 47003 (2009)

    Google Scholar 

  18. Köster, D.: Numerical simulation of acoustic streaming on surface acoustic wave-driven biochips. SIAM J. Sci. Comput. 29(8), 2352–80 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Frommelt, T., Gogel, D., Kostur, M., Talkner, P., Hanggi, P., Wixforth, A.: Flow patterns and transport in Rayleigh surface acoustic wave streaming: combined finite element method and ray tracing numerics versus experiments. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(10), 2298–2305 (2008)

    Google Scholar 

  20. Vanneste, J., Bühler, O.: Streaming by leaky surface acoustic waves. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. Jun 8 (Vol. 467, No. 2130, pp. 1779–1800). The Royal Society (2011)

  21. Alghane, M., Chen, B.X., Fu, Y.Q., Li, Y., Luo, J.K., Walton, A.J.: Experimental and numerical investigation of acoustic streaming excited by using a surface acoustic wave device on a \(128^{\circ }\) YX-LiNbO\(_{\mathbf{3}}\) substrate. J. Micromech. Microeng. 21(1), 015005 (2010)

    Google Scholar 

  22. Frommelt, T., Kostur, M., Wenzel-Schäfer, M., Talkner, P., Hänggi, P., Wixforth, A.: Microfluidic mixing via acoustically driven chaotic advection. Phys. Rev. Lett. 100(5), 034502 (2008)

    Google Scholar 

  23. Sankaranarayanan, S.K., Cular, S., Bhethanabotla, V.R., Joseph, B.: Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment. Phys. Rev. E 77(8), 066308 (2008)

    Google Scholar 

  24. Tang, Q., Hu, J.: Diversity of acoustic streaming in a rectangular acoustofluidic field. Ultrasonics 30(58), 27–34 (2015)

    Google Scholar 

  25. Moudjed, B., Botton, V., Henry, D., Millet, S., Garandet, J.P., Hadid, H.B.: Near-field acoustic streaming jet. Phys. Rev. E 91(5), 033011 (2015)

    Google Scholar 

  26. Gubaidullin, A.A., Yakovenko, A.V.: Effects of heat exchange and nonlinearity on acoustic streaming in a vibrating cylindrical cavity. J. Acoust. Soc. Am. 137(8), 3281–7 (2015)

    Google Scholar 

  27. Franke, T., Hoppe, R.H., Linsenmann, C., Zeleke, K.: Numerical simulation of surface acoustic wave actuated cell sorting. Cent. Euro. J. Math. 11(6), 760–78 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Antil, H., Glowinski, R., Hoppe, R.H., Linsenmann, C., Pan, T.W., Wixforth, A.: Modeling, simulation, and optimization of surface acoustic wave driven microfluidic biochips. J. Comput. Math. 1, 149–69 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Haydock, D., Yeomans, J.M.: Lattice Boltzmann simulations of attenuation-driven acoustic streaming. J. Phys. A Math. Gen. 36(22), 5683 (2003)

    MathSciNet  MATH  Google Scholar 

  30. Ovchinnikov, M., Zhou, J., Yalamanchili, S.: Acoustic streaming of a sharp edge. J. Acoust. Soc. Am. 136(1), 22–9 (2014)

    Google Scholar 

  31. Sajjadi, B., Raman, A.A., Ibrahim, S.: Influence of ultrasound power on acoustic streaming and micro-bubbles formations in a low frequency sono-reactor: mathematical and 3D computational simulation. Ultrason. Sonochem. 1(24), 193–203 (2015)

    Google Scholar 

  32. Uemura, Y., Sasaki, K., Minami, K., Sato, T., Choi, P.K., Takeuchi, S.: Observation of cavitation bubbles and acoustic streaming in high intensity ultrasound fields. Jpn. J. Appl. Phys. 54(7S1), 07HB05 (2015)

    Google Scholar 

  33. Satoh, A.: Introduction to Practice of Molecular Simulation: Molecular Dynamics, Monte Carlo, Brownian Dynamics, Lattice Boltzmann and Dissipative Particle Dynamics. Elsevier (2010)

  34. He, X., Luo, L.S.: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56(8), 6811 (1997)

    Google Scholar 

  35. Lallemand, P., Luo, L.S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61(8), 6546 (2000)

    MathSciNet  Google Scholar 

  36. Sukop, M., Thorne, Jr. D.T.: Lattice Boltzmann Modeling. Springer (2006)

  37. Mohamad, A.A.: Lattice Boltzmann Method. Springer, London (2011)

    MATH  Google Scholar 

  38. Huang, H., Sukop, M., Lu, X.: Multiphase Lattice Boltzmann Methods: Theory and Application. Wiley, Chichester (2015)

    Google Scholar 

  39. Rahni, M.T., Karbaschi, M., Miller, R.: Computational Methods for Complex Liquid-Fluid Interfaces. CRC Press, Boca Raton (2015)

    Google Scholar 

  40. Gunstensen, A.K., Rothman, D.H., Zaleski, S., Zanetti, G.: Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 43(10), 4320 (1991)

    Google Scholar 

  41. Rothman, D.H., Keller, J.M.: Immiscible cellular-automaton fluids. J. Stat. Phys. 52(3–4), 1119–27 (1988)

    MathSciNet  MATH  Google Scholar 

  42. Grunau, D., Chen, S., Eggert, K.: A lattice Boltzmann model for multiphase fluid flows. Phys. Fluids A 5(12), 2557–62 (1993)

    MATH  Google Scholar 

  43. Reis, T., Phillips, T.N.: Lattice Boltzmann model for simulating immiscible two-phase flows. J. Phys. A Math. Theor. 40(16), 4033 (2007)

    MathSciNet  MATH  Google Scholar 

  44. Wu, L., Tsutahara, M., Kim, L.S., Ha, M.: Three-dimensional lattice Boltzmann simulations of droplet formation in a cross-junction micro-channel. Int. J. Multiph. Flow 34(11), 852–64 (2008)

    Google Scholar 

  45. Shan, X., Chen, H.: Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E 49(6), 2941 (1994)

    Google Scholar 

  46. Shan, X.: Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models. Phys. Rev. E 73(6), 047701 (2006)

    Google Scholar 

  47. Swift, M.R., Orlandini, E., Osborn, W.R., Yeomans, J.M.: Lattice Boltzmann simulations of liquid–gas and binary fluid systems. Phys. Rev. E 54(7), 5041 (1996)

    Google Scholar 

  48. Tsutahara, M.: The finite-difference lattice Boltzmann method and its application in computational aero-acoustics. Fluid Dyn. Res. 44(6), 045507 (2012)

    MathSciNet  MATH  Google Scholar 

  49. Montessori, A., Lauricella, M., La Rocca, M., Succi, S., Stolovicki, E., Ziblat, R., Weitz, D.: Regularized lattice Boltzmann multicomponent models for low capillary and Reynolds microfluidics flows. Comput. Fluids 15(167), 33–9 (2018)

    MathSciNet  MATH  Google Scholar 

  50. Huang, H., Huang, J.J., Lu, X.Y., Sukop, M.C.: On simulations of high-density ratio flows using color-gradient multiphase lattice Boltzmann models. Int. J. Mod. Phys. C 24(04), 1350021 (2013)

    Google Scholar 

  51. Leclaire, S., Parmigiani, A., Chopard, B., Latt, J.: Three-dimensional lattice Boltzmann method benchmarks between color-gradient and pseudo-potential immiscible multi-component models. Int. J. Mod. Phys. C 28(07), 1750085 (2017)

    Google Scholar 

  52. Leclaire, S., Parmigiani, A., Chopard, B., Latt, J.: Generalized three-dimensional lattice Boltzmann color-gradient method for immiscible two-phase pore-scale imbibition and drainage in porous media. Phys. Rev. E 95(3), 1–31 (2017)

    Google Scholar 

  53. Leclaire, S., Parmigiani, A., Malaspinas, O., Chopard, B., Latt, J.: Generalized three-dimensional lattice Boltzmann color-gradient method for immiscible two-phase pore-scale imbibition and drainage in porous media. Phys. Rev. E 95(5), 033306 (2017)

    Google Scholar 

  54. Ba, Y., Liu, H., Li, Q., Kang, Q., Sun, J.: Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase flows with high density ratio. Phys. Rev. E 94(2), 023310 (2016)

    MathSciNet  Google Scholar 

  55. Ba, Y., Liu, H., Sun, J., Zheng, R.: Color-gradient lattice Boltzmann model for simulating droplet motion with contact-angle hysteresis. Phys. Rev. E 88(6), 043306 (2013)

    Google Scholar 

  56. Liu, H., Ju, Y., Wang, N., Xi, G., Zhang, Y.: Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference. Phys. Rev. E 92(5), 033306 (2015)

    MathSciNet  Google Scholar 

  57. Latva-Kokko, M., Rothman, D.H.: Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids. Phys. Rev. E 71(7), 056702 (2005)

    Google Scholar 

  58. Ding, H., Spelt, P.D.: Wetting condition in diffuse interface simulations of contact line motion. Phys. Rev. E 75(6), 046708 (2007)

    Google Scholar 

  59. Ding, H., Spelt, P.D.: Onset of motion of a three-dimensional droplet on a wall in shear flow at moderate Reynolds numbers. J. Fluid Mech. 599, 341–62 (2008)

    MATH  Google Scholar 

  60. Dung Luong, T., Trung, Nguyen N.: Surface acoustic wave driven microfluidics—a review. Micro Nanosyst. 2(5), 217–25 (2010)

    Google Scholar 

  61. Beyssen, D., Le Brizoual, L., Elmazria, O., Alnot, P.: Microfluidic device based on surface acoustic wave. Sens. Actuators B Chem. 118(1–2), 380–5 (2006)

    Google Scholar 

  62. Guo, Y.J., Lv, H.B., Li, Y.F., He, X.L., Zhou, J., Luo, J.K., Zu, X.T., Walton, A.J., Fu, Y.Q.: High frequency microfluidic performance of LiNbO\(_{3}\) and ZnO surface acoustic wave devices. J. Appl. Phys. 116(2), 024501 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Shams Taleghani.

Additional information

Communicated by S. Balachandar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noori, M.S., Rahni, M.T. & Taleghani, A.S. Effects of contact angle hysteresis on drop manipulation using surface acoustic waves. Theor. Comput. Fluid Dyn. 34, 145–162 (2020). https://doi.org/10.1007/s00162-020-00516-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-020-00516-0

Keywords

Navigation