Skip to main content
Log in

A mean first passage time genome rearrangement distance

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper introduces a new way to define a genome rearrangement distance, using the concept of mean first passage time from probability theory. Crucially, this distance provides a genuine metric on genome space. We develop the theory and introduce a link to a graph-based zeta function. The approach is very general and can be applied to a wide variety of group-theoretic models of genome evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bafna V, Pevzner PA (1993) Genome rearrangements and sorting by reversals. In: 34th annual symposium on foundations of computer science, 1993. Proceedings. IEEE, pp 148–157

  • Bergeron A, Mixtacki J, Stoye J (2006) A unifying view of genome rearrangements. In: Bücher P, Moret BME (eds) Algorithms in bioinformatics. WABI 2006. Lecture notes in computer science, vol 4175. Springer, Berlin, Heidelberg, pp 163–173

  • Bhatia S, Egri-Nagy A, Serdoz S, Praeger C, Gebhardt V, Francis A (2019) A flexible framework for determining weighted genome rearrangement distance. preprint

  • Bowen R, Lanford III OE (1970) Zeta functions of restrictions of the shift transformation. In: Global analysis, proceedings of symposia in pure mathematics. Volume XIV, Berkeley, California, 1968

  • Butler RW, Huzurbazar AV (1997) Stochastic network models for survival analysis. J Am Stat Assoc 92(437):246–257

    Article  MathSciNet  Google Scholar 

  • Clark C, Egri-Nagy A, Francis A, Gebhardt V (2019) Bacterial phylogeny in the Cayley graph. Discrete Math Algorithms Appl 11(05):1950059

    Article  MathSciNet  Google Scholar 

  • Dalevi D, Eriksen N (2008) Expected gene-order distances and model selection in bacteria. Bioinformatics 24(11):1332–1338

    Article  Google Scholar 

  • Egri-Nagy A, Gebhardt V, Tanaka MM, Francis AR (2014) Group-theoretic models of the inversion process in bacterial genomes. J Math Biol 69(1):243–265

    Article  MathSciNet  Google Scholar 

  • Francis AR (2014) An algebraic view of bacterial genome evolution. J Math Biol 69(6–7):1693–1718

    Article  MathSciNet  Google Scholar 

  • Howard RA (1960) Dynamic programming and Markov processes. The Technology Press of M.I.T, Cambridge

    MATH  Google Scholar 

  • Howard RA, Matheson JE (1971) Risk-sensitive Markov decision processes. Manag Sci 18:356–369

    Article  MathSciNet  Google Scholar 

  • Humphreys JE (1990) Reflection groups and Coxeter groups, vol 29. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. Mamm Protein Metab 3(21):132

    Google Scholar 

  • Mason SJ (1953) Feedback theory-some properties of signal flow graphs. Proc IRE 41(9):1144–1156

    Article  Google Scholar 

  • Pyke R (1961) Markov renewal processes: definitions and preliminary properties. Ann Math Stat 32:1231–1242

    Article  MathSciNet  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    Google Scholar 

  • Sankoff D, Leduc G, Antoine N, Paquin B, Lang BF, Cedergren R (1992) Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. Proc Natl Acad Sci 89(14):6575–6579

    Article  Google Scholar 

  • Serdoz S, Egri-Nagy A, Sumner J, Holland BR, Jarvis PD, Tanaka MM, Francis AR (2017) Maximum likelihood estimates of pairwise rearrangement distances. J Theor Biol 423:31–40

    Article  MathSciNet  Google Scholar 

  • Sumner JG, Jarvis PD, Francis AR (2017) A representation-theoretic approach to the calculation of evolutionary distance in bacteria. J Phys A Math Theor 50(33):335601

    Article  MathSciNet  Google Scholar 

  • Terauds V, Sumner J (2019) Maximum likelihood estimates of rearrangement distance: implementing a representation-theoretic approach. Bull Math Biol 81(2):535–567

    Article  MathSciNet  Google Scholar 

  • Wang L-S, Warnow T (2001) Estimating true evolutionary distances between genomes. In: Proceedings of the thirty-third annual ACM symposium on theory of computing. ACM, pp 637–646

  • Yancopoulos S, Attie O, Friedberg R (2005) Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16):3340–3346

    Article  Google Scholar 

Download references

Acknowledgements

ARF acknowledges the support of the Australian Research Council via Discovery Project DP180102215.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Francis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Evolutionary models

Table 2 shows a range of group-based models that this approach can be applied to. Each corresponds to a particular group and generating set.

Table 2 Models and corresponding group features

Appendix B. Cayley graphs for \(S_4\)

The Cayley graphs of \(S_4\) with standard and with circular generators are shown for reference in Figs. 4 and 5 respectively.

Fig. 4
figure 4

Cayley graph of \(S_4\) with standard Coxeter generators. Edges are coded dashed blue for multiplication on the right by \((1\ 2)\), dotted red for \((2\ 3)\), and black for \((3\ 4)\) (group action is also on the right) (color figure online)

Fig. 5
figure 5

Cayley graph of \(S_4\) with circular generators. Edges are coded dashed blue for multiplication on the right by \((1\ 2)\), dotted red for \((2\ 3)\), black for \((3\ 4)\), and dash-dotted green for \((1\ 4)\) (group action is also on the right) (color figure online)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francis, A.R., Wynn, H.P. A mean first passage time genome rearrangement distance. J. Math. Biol. 80, 1971–1992 (2020). https://doi.org/10.1007/s00285-020-01487-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-020-01487-w

Mathematics Subject Classification

Navigation