Skip to main content
Log in

The Complementing and Agmon’s Conditions in Finite Elasticity

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We consider the complementing condition and Agmon’s condition for linearized elasticity in two-dimensions. With an elasticity tensor \(\mathsf{C}\) derived from a compressible, isotropic stored energy \(W\), linearized about a homogeneous deformation \(\mathbf{f}_{0}\), we apply the complementing and Agmon’s conditions to a traction portion of the surface of a body with unit normal \(\mathbf{n}\). We show these conditions are independent of \(\mathbf{n}\) for arbitrary \(W\) and \(\mathbf{f}_{0}\). We also consider the case of failure of the complementing condition for the pure traction problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agmon, S.: The coerciveness problem for integro-differential forms. J. Anal. Math. 6, 183–223 (1958)

    MathSciNet  MATH  Google Scholar 

  2. Agmon, S.: On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Commun. Pure Appl. Math. 15, 119–147 (1962)

    MathSciNet  MATH  Google Scholar 

  3. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Commun. Pure Appl. Math. 17, 35–92 (1964)

    MathSciNet  MATH  Google Scholar 

  4. Ball, J.M., Marsden, J.E.: Quasiconvexity at the boundary, positivity of the second variation and elastic stability. Arch. Ration. Mech. Anal. 86, 251–277 (1984)

    MathSciNet  MATH  Google Scholar 

  5. Buffoni, B., Rey, S.: Localized thickening of a compressed elastic band. J. Elast. 82, 49–71 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Ciarlet, P.G.: Mathematical Elasticity, vol. I. North-Holland, Amsterdam (1988)

    MATH  Google Scholar 

  7. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw Hill, New York (1955)

    MATH  Google Scholar 

  8. Davies, P.J.: Buckling and barrelling instabilities in finite elasticity. J. Elast. 21, 147–192 (1989)

    MathSciNet  MATH  Google Scholar 

  9. Davies, P.J.: Buckling and barrelling instabilities on non-linearly elastic columns. Q. Appl. Math. 49, 407–426 (1991)

    MathSciNet  MATH  Google Scholar 

  10. de Figueiredo, D.G.: The coerciveness problem for forms over vector valued functions. Commun. Pure Appl. Math. 16, 63–94 (1963)

    MathSciNet  MATH  Google Scholar 

  11. Fichera, G.: Existence theorems in elasticity. In: Handbuch der Physik, vol. VIa/2. Springer, New York (1972)

    Google Scholar 

  12. Friedman, A.: Partial Differential Equations. Holt, Rinehart & Winston, New York (1969)

    MATH  Google Scholar 

  13. Gurtin, M.E.: An Introduction to Continuum Mechanics. Academic Press, San Diego (1981)

    MATH  Google Scholar 

  14. Healey, T.J., Montes-Pizarro, E.L.: Global bifurcation in nonlinear elasticity with an application to barrelling states of cylindrical columns. J. Elast. 71, 33–58 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Healey, T.J., Simpson, H.C.: Global continuation in nonlinear elasticity. Arch. Ration. Mech. Anal. 143, 1–28 (1998)

    MathSciNet  MATH  Google Scholar 

  16. Kato, Y.: On the coerciveness for integro-differential quadratic forms. J. Anal. Math. 27, 118–158 (1974)

    MathSciNet  MATH  Google Scholar 

  17. Kato, Y.: The coerciveness for integro-differential quadratic forms and Korn’s inequality. Nagoya Math. J. 73, 7–28 (1979)

    MathSciNet  MATH  Google Scholar 

  18. Knowles, J.K., Sternberg, E.: On the failure of ellipticity of the equations for finite elastostatic plane strain. Arch. Ration. Mech. Anal. 63, 321–336 (1977)

    MathSciNet  MATH  Google Scholar 

  19. Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications. I. Springer, Berlin (1972)

    MATH  Google Scholar 

  20. Lopatinskii, Y.B.: On a method of reducing boundary value problems for a system of differential equations of elliptic type to regular integral equations. Ukr. Mat. Zh. 5, 123–151 (1953)

    Google Scholar 

  21. MacSithigh, G.P.: Necessary conditions at the boundary for minimizers in incompressible finite elasticity. J. Elast. 81, 217–269 (2005)

    MathSciNet  Google Scholar 

  22. MacSithigh, G.P.: Agmon’s condition for incompressible elasticity: a formulation of Mielke-Sprenger type. Z. Angew. Math. Phys. 58, 679–696 (2007)

    MathSciNet  MATH  Google Scholar 

  23. MacSithigh, G.P.: Fully explicit Agmon’s condition for general states of a special incompressible elastic material. Int. J. Non-Linear Mech. 42, 369–375 (2007)

    ADS  MathSciNet  Google Scholar 

  24. Mielke, A., Sprenger, P.: Quasiconvexity at the boundary and a simple variational formulation of Agmon’s condition. J. Elast. 51, 23–41 (1998)

    MathSciNet  MATH  Google Scholar 

  25. Mikhlin, S.G.: The spectrum of a family of operators in the theory of elasticity. Russ. Math. Surv. 28(3), 45–88 (1973)

    ADS  MATH  Google Scholar 

  26. Morrey, C.B.: Multiple Integrals in the Calculus of Variations. Springer, Berlin (1966)

    MATH  Google Scholar 

  27. Negron-Marrero, P.V., Montes-Pizarro, E.: Axisymmetric deformations of buckling and barrelling type for cylinders under lateral compression—the linear problem. J. Elast. 65, 61–86 (2001)

    MathSciNet  MATH  Google Scholar 

  28. Negron-Marrero, P.V., Montes-Pizarro, E.: Violation of the complementing condition and local bifurcation in nonlinear elasticity. J. Elast. 107, 151–178 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Peetre, J.: Another approach to elliptic boundary problems. Commun. Pure Appl. Math. 14, 711–731 (1961)

    MathSciNet  MATH  Google Scholar 

  30. Pence, T.J., Song, J.: Buckling instabilities in a thick elastic three-ply composite plate under thrust. Int. J. Solids Struct. 27, 1809–1828 (1991)

    MATH  Google Scholar 

  31. Rabier, P.J., Oden, J.T.: Bifurcation in Rotating Bodies. Recherches en Mathematiques Appliquees, vol. 11. Springer, Berlin (1989)

    Google Scholar 

  32. Ramanan, L.: The complementing condition in elasticity. Masters’ thesis, University of Tennessee (2014)

  33. Rayleigh, L.: On waves propagated along the plane surface of an elastic solid. Proc. Lond. Math. Soc. 17, 4–11 (1887)

    MathSciNet  MATH  Google Scholar 

  34. Schechter, M.: General boundary value problems for elliptic partial differential equations. Commun. Pure Appl. Math. 12, 457–486 (1959)

    MathSciNet  MATH  Google Scholar 

  35. Shapiro, Z.Y.: On general boundary problems for elliptic equations. Izv. Akad. Nauk SSSR, Ser. Mat. 17, 539–562 (1953)

    Google Scholar 

  36. Silhavy, M.: The Mechanics and Thermodynamics of Continuous Media. Springer, Berlin (1997)

    MATH  Google Scholar 

  37. Silhavy, M.: Differentiability properties of isotropic functions. Duke Math. J. 104, 367–373 (2000)

    MathSciNet  MATH  Google Scholar 

  38. Simpson, H.C., Spector, S.J.: On copositive matrices and strong ellipticity for isotropic elastic materials. Arch. Ration. Mech. Anal. 84, 55–68 (1983)

    MathSciNet  MATH  Google Scholar 

  39. Simpson, H.C., Spector, S.J.: On barrelling instabilities in finite elasticity. J. Elast. 14, 103–125 (1984)

    MathSciNet  MATH  Google Scholar 

  40. Simpson, H.C., Spector, S.J.: On the failure of the complementing condition and nonuniqueness in linear elastostatics. J. Elast. 15, 229–231 (1985)

    MathSciNet  MATH  Google Scholar 

  41. Simpson, H.C., Spector, S.J.: On the positivity of the second variation in finite elasticity. Arch. Ration. Mech. Anal. 98, 1–30 (1987)

    MathSciNet  MATH  Google Scholar 

  42. Simpson, H.C., Spector, S.J.: Necessary conditions at the boundary for minimizers in finite elasticity. Arch. Ration. Mech. Anal. 107, 105–125 (1989)

    MathSciNet  MATH  Google Scholar 

  43. Simpson, H.C., Spector, S.J.: On bifurcation in finite elasticity: buckling of a rectangular rod. J. Elast. 92, 277–326 (2008)

    MathSciNet  MATH  Google Scholar 

  44. Thompson, J.L.: Some existence theorems for the traction boundary value problems of linearized elastostatics. Arch. Ration. Mech. Anal. 32, 369–399 (1969)

    MathSciNet  MATH  Google Scholar 

  45. Valent, T.: Boundary Value Problems in Finite Elasticity. Springer, Berlin (1988)

    MATH  Google Scholar 

  46. Von Wahl, W.: Gebrochene Potenzen eines elliptischen Operators und parabolische Differentialgleichungen in Raumen holderstetiger Funktionen. Nachr. Akad. Wiss. Gött., II Math.-Phys. Kl. 11, 231–258 (1972)

    MATH  Google Scholar 

Download references

Acknowledgements

The author thanks E.L. Montes-Pizarro, P.V. Negron-Marrero and the referees for their helpful comments and discussion relating to this paper.

Author information

Authors and Affiliations

Authors

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We recall the linearized 4-tensor in (4.5) in two dimensions

$$ \mathsf{C}[\mathbf{H}] = \left [ \textstyle\begin{array}{c@{\quad }c} K H_{11}+N H_{22} & P H_{12}+L H_{21} \\ L H_{12}+P H_{21} & N H_{11}+T H_{22} \end{array}\displaystyle \right ], $$
(A.1)

for \(\mathbf{H} \in \mathrm{M}_{2}\). In this appendix we consider some positivity properties of \(\mathsf{C}\) as well as some consequences if \((\mathsf{C},\mathbf{n})\) fails the complementing condition for the boundary value problem (A.4) below. Note \(\mathsf{C}\) is symmetric.

From (A.1) we have

$$ \mathbf{H} \cdot \mathsf{C}[\mathbf{H}] = [H_{11} \ \ H_{22}] \mathbf{D}_{1} \left [ \textstyle\begin{array}{c} H_{11} \\ H_{22} \end{array}\displaystyle \right ] + [H_{12} \ \ H_{21}] \mathbf{D}_{2} \left [ \textstyle\begin{array}{c} H_{12} \\ H_{21} \end{array}\displaystyle \right ] $$
(A.2)

where

$$ \mathbf{D}_{1} = \left [ \textstyle\begin{array}{c@{\quad }c} K & N \\ N & T \end{array}\displaystyle \right ],\qquad \mathbf{D}_{2} = \left [ \textstyle\begin{array}{c@{\quad }c} P & L \\ L & P \end{array}\displaystyle \right ],\qquad \mathbf{H} = \left [ \textstyle\begin{array}{c@{\quad }c} H_{11} & H_{12} \\ H_{21} & H_{22} \end{array}\displaystyle \right ]. $$

We say \(\mathsf{C}\) is positive, \(\mathsf{C} > 0\), iff \(\mathbf{H} \cdot \mathsf{C}[\mathbf{H}] > 0 \) for all \(\mathbf{H} \in \mathrm{M}_{2} \setminus \{0\}\); and \(\mathsf{C}\) is nonnegative, \(\mathsf{C} \ge 0\), iff \(\mathbf{H} \cdot \mathsf{C}[\mathbf{H}] \ge 0 \) for all \(\mathbf{H} \in \mathrm{M}_{2} \). From (A.2) we clearly have that \(\mathsf{C} > 0\) iff \(\mathbf{D} _{1} > 0\) and \(\mathbf{D}_{2} > 0\); and additionally \(\mathsf{C} \ge 0\) iff \(\mathbf{D}_{1} \ge 0\) and \(\mathbf{D}_{2} \ge 0\). (Here \(\mathbf{D}_{i} >0 \) means \(\mathbf{D}_{i}\) is a positive definite matrix, and \(\mathbf{D}_{i} \ge 0 \) means \(\mathbf{D}_{i}\) is a positive semidefinite matrix.)

Proposition A.1

Suppose\(\mathsf{C} \ge 0\)and\(\mathbf{H} \in \mathrm{M}_{2}\). Then\(\mathbf{H} \cdot \mathsf{C}[\mathbf{H}] = 0\)iff\(\mathsf{C}[ \mathbf{H}] = \mathbf{0}\).

Proof

Clearly \(\mathsf{C}[\mathbf{H}] = \mathbf{0}\) implies \(\mathbf{H} \cdot \mathsf{C}[\mathbf{H}] = 0\). Conversely suppose \(\mathbf{H} \cdot \mathsf{C}[\mathbf{H}] = 0\). Then by semidefiniteness of \(\mathbf{D}_{1}\) and \(\mathbf{D}_{2}\) in (A.2) we have D1[H11H22]=D2[H12H21]=0. This yields \(\mathsf{C}[\mathbf{H}] = \mathbf{0}\) from (A.1). □

In the case \(\mathsf{C}\) is strongly elliptic (Theorem 4.1), we can characterize the set of \(\mathbf{H}\) that satisfy \(\mathsf{C}[ \mathbf{H}] = \mathbf{0}\) as follows. We denote the kernel of \(\mathsf{C}\),

$$ \operatorname{ker} \mathsf{C} = \bigl\{ \mathbf{H} \in \mathrm{M}_{2} : \mathsf{C}[\mathbf{H}] = \mathbf{0} \bigr\} . $$

Proposition A.2

Suppose\(P > 0\)and either\(K > 0\)or\(T > 0\). Then

  1. (i)

    \(\mathsf{C}[\mathbf{H}] = \mathbf{0}\)iffD1[H11H22]=D2[H12H21]=0.

  2. (ii)

    If\(KT - N^{2} \ne 0\), \(P^{2} - L^{2} \ne 0\)then\(\ker \mathsf{C} = \{\mathbf{0}\}\).

  3. (iii)

    If\(KT - N^{2} = 0\), \(P^{2} - L^{2} \ne 0\)thenkerC=span{[N00K]}.

  4. (iv)

    If\(KT - N^{2} \ne 0\), \(P^{2} - L^{2} = 0\)thenkerC=span{[0LP0]}.

  5. (v)

    If\(KT - N^{2} = 0\), \(P^{2} - L^{2} = 0\)thenkerC=span{[N00K],[0LP0]}.

Proof

(i). This follows directly from the fact that \(\mathsf{C}[\mathbf{H}] = \mathbf{0}\) iff each entry of \(\mathsf{C}[\mathbf{H}]\) in (A.1) is zero.

(ii)–(v). These follow from (i) and examining the cases when \(\det \mathbf{D}_{i}\) is zero or not; note rank \(\mathbf{D}_{i} \ge 1\) by the positivity assumptions of \(K,T,P\). □

In the case of the Lame tensor in (2.24),

$$ \mathsf{C}[\mathbf{H}] = \mu \bigl(\mathbf{H} + \mathbf{H}^{T} \bigr) + \lambda (\mathbf{H} \cdot \mathbf{I}) \mathbf{I}, $$

we have \(K = T = 2 \mu + \lambda \), \(N = \lambda \), \(P = L= \mu \). It is strongly elliptic iff \(\mu > 0\) and \(2\mu + \lambda > 0\) (see (4.6)). It is nonnegative iff \(\mu \ge 0\) and \(\mu + \lambda \ge 0\). It is not positive, as defined above, since \(\mathsf{C}[\mathbf{W}] = \mathbf{0}\) for any skew \(\mathbf{W} \in \mathrm{M}_{2}\).

Next, fixing the tensor \(\mathsf{C}\) in (A.1), we assume in the following, that it is strongly elliptic (cf. (4.6)); in particular, \(K > 0\), \(T > 0\), \(P > 0\). Then for any unit vector \(\mathbf{n} \in {\mathbb{R}}^{2}\), by Theorem 4.4, \((\mathsf{C},\mathbf{n})\) fails the complementing condition iff

$$ A = P\bigl(KT - N^{2}\bigr) + \sqrt{KT} \bigl(P^{2} - L^{2}\bigr) = 0. $$
(A.3)

We note, that, if \(A = 0\), then, \(\det \mathbf{D}_{1} = KT - N^{2} = 0\) holds iff \(\det \mathbf{D}_{2} = P^{2} - L^{2} = 0\) holds.

Suppose \(\varOmega \subset {\mathbb{R}}^{2}\) is a bounded, connected, open set and its boundary, \(\partial \varOmega \), is \(C^{2}\)-smooth. Consider the linearized traction boundary value problem with constant tensor \(\mathsf{C}\)

$$\begin{aligned} \begin{aligned} \operatorname {div}\mathsf{C} [\nabla \mathbf{u}] &= \mathbf{0} \quad\mbox{on } \varOmega , \\ \mathsf{C} [\nabla \mathbf{u}] \mathbf{n} &= 0 \quad\mbox{on } \partial \varOmega , \end{aligned} \end{aligned}$$
(A.4)

where \(\mathbf{n}\) is the outward unit normal to \(\partial \varOmega \); here the solution \(\mathbf{u}:\varOmega \to {\mathbb{R}}^{2}\) is in the Sobolev space \(W^{2,2}(\varOmega )\). Let

$$ S = \mbox{set of solutions } \mathbf{u} \in W^{2,2}(\varOmega ) \mbox{ of (A.4)}. $$

Note \(S\) contains the constant functions on \(\varOmega \). By Agmon, Douglis, Nirenberg [3], since \(\mathsf{C}\) is strongly elliptic, if \((\mathsf{C},\mathbf{n})\) satisfies the complementing condition on all of \(\partial \varOmega \), then the elliptic estimates hold for the operators in (A.4). From this, since \(\varOmega \) is bounded, \(S\) is a finite dimensional subspace of \(W^{2,2}(\varOmega )\) (cf. Peetre [29]). If, on the other hand, the complementing condition for \((\mathsf{C}, \mathbf{n})\) fails as in (A.3) then we show that \(\dim S = \infty \) is possible.

In part (iv) of the following Theorem A.3, we will denote, for an open set \(\tilde{\varOmega } \subset {\mathbb{R}}^{2}\),

$$\begin{aligned} \mathcal{U}(\tilde{\varOmega }) ={}& \bigl\{ \mathbf{v} = (v_{1},v_{2}) \in C ^{\infty }\bigl(\tilde{ \varOmega },{\mathbb{R}}^{2}\bigr) : v_{1} + i v_{2} \mbox{ is an analytic function of } x_{1} + ix_{2} \mbox{ on } \tilde{\varOmega }, \\ &\ \,(x_{1},x_{2}) \in \tilde{\varOmega } \bigr\} \end{aligned}$$
(A.5)

viewing \(\tilde{\varOmega }\) also as an open subset of ℂ.

Theorem A.3

Suppose\(\mathsf{C}\)is strongly elliptic and\(\mathsf{C} \ge 0\).

  1. (i)

    If\(KT - N^{2} \ne 0, P^{2} - L^{2} \ne 0\)then\(S = \{ \mathbf{a} \in {\mathbb{R}}^{2} \}\).

  2. (ii)

    If\(KT - N^{2} = 0, P^{2} - L^{2} \ne 0\)thenS={c[N00K]x+a:cR,aR2}.

  3. (iii)

    If\(KT - N^{2} \ne 0, P^{2} - L^{2} = 0\)thenS={c[0LP0]x+a:cR,aR2}.

  4. (iv)

    If\(KT - N^{2} = 0, P^{2} - L^{2} = 0\), let\(\mathbf{D} = \operatorname{diag} [ \sqrt{PK}, -(\operatorname{sgn} N) \sqrt{|N||L|} ]\),

    \(\mathbf{B} = \operatorname{diag} [ \sqrt{K|L|}, \sqrt{P|N|} ]\), \(\tilde{\varOmega } = \mathbf{B}^{-1} \varOmega = \{\mathbf{B}^{-1} \mathbf{x} : \mathbf{x} \in \varOmega \}\), \(T\mathbf{u} ( \tilde{\mathbf{x}}) = \mathbf{D}\mathbf{u}(\mathbf{B} \tilde{\mathbf{x}})\)for\(\tilde{\mathbf{x}} \in \tilde{\varOmega }\). Then

    $$ S = \bigl\{ \mathbf{u} \in C^{\infty }(\varOmega ): T \mathbf{u} \in \mathcal{U}(\tilde{\varOmega }) \bigr\} . $$
    (A.6)

Proof

Suppose \(\mathbf{u} \in S\). By the divergence theorem \(\int _{\varOmega } \nabla \mathbf{u} \cdot \mathsf{C}[\nabla \mathbf{u}] \, dx = - \int _{\varOmega } \mathbf{u} \cdot \operatorname {div}\mathsf{C} [\nabla \mathbf{u}] \, dx + \int _{\partial \varOmega } \mathbf{u} \cdot \mathsf{C}[\nabla \mathbf{u}]\mathbf{n} \, da = 0\). Then nonnegativity of \(\mathsf{C}\) implies \(\nabla \mathbf{u} \cdot \mathsf{C} [\nabla \mathbf{u}] = 0\) a.e. \(\varOmega \) and Proposition A.1 yields \(\mathsf{C} [\nabla \mathbf{u}] = \mathbf{0}\) a.e. \(\varOmega \). Conversely, if \(\mathbf{u} \in W^{2,2}(\varOmega )\) satisfies the last equation then clearly \(\mathbf{u} \in S\). Thus \(\mathbf{u} \in S\) iff \(\mathsf{C} [\nabla \mathbf{u}] = \mathbf{0}\) a.e. \(\varOmega \). Next we appeal to Proposition A.2.

(i) If \(KT - N^{2} \ne 0, P^{2} - L^{2} \ne 0\) then \(\mathbf{u} \in S\) iff \(\nabla \mathbf{u} = \mathbf{0}\) a.e. \(\varOmega \) iff \(\mathbf{u}= \mbox{const. on }\varOmega \).

(ii) If \(KT - N^{2} = 0, P^{2} - L^{2} \ne 0\) and \(\mathbf{u} \in S\) then uspan{[N00K]}, so \(K \frac{\partial u_{1}}{\partial x_{1}} + N \frac{ \partial u_{2}}{\partial x_{2}} = 0, \frac{\partial u_{1}}{\partial x _{2}} = \frac{\partial u_{2}}{\partial x_{1}} = 0\) a.e. \(\varOmega \). Thus \(u_{1}\) is a function of \(x_{1}\) only and \(u_{2}\) is a function of \(x_{2}\) only. Then \(\nabla \mathbf{u}\) is constant (note \(N \ne 0\)) with u=c[N00K] for some constant \(c \in {\mathbb{R}}\).

(iii) If \(KT - N^{2} \ne 0, P^{2} - L^{2} = 0\) and \(\mathbf{u} \in S\), by similar reasoning in (ii), \(u_{1}\) is a function of \(x_{2}\) only and \(u_{2}\) is a function of \(x_{1}\) only with u=c[0LP0] for \(c \in {\mathbb{R}}\).

(iv) Let \(KT - N^{2} = 0, P^{2} - L^{2} = 0\); we show below \(NL < 0\). If \(\mathbf{u} \in S\) then \(K\frac{\partial u_{1}}{\partial x_{1}} + N \frac{\partial u_{2}}{\partial x_{2}} = 0\), \(P \frac{ \partial u_{1}}{\partial x_{2}} + L \frac{\partial u_{2}}{\partial x _{1}} = 0\) a.e. \(\varOmega \). Rescaling variables via \(\tilde{u}_{1} = a _{1} u_{1}, \tilde{u}_{2} = a_{2} u_{2}, \tilde{x}_{1} = b_{1}^{-1} x _{1}\), \(\tilde{x}_{2} = b_{2}^{-1} x_{2}\) with \(a_{1} = \sqrt{PK}\), \(a _{2} = - \operatorname{sgn} N \sqrt{|N||L|}\), \(b_{1} = \sqrt{K|L|}\), \(b_{2} = \sqrt{P|N|}\) yields the equations \(\frac{\partial \tilde{u}_{1}}{ \partial \tilde{x}_{1}} - \frac{\partial \tilde{u}_{2}}{\partial \tilde{x}_{2}} = 0, \frac{\partial \tilde{u}_{1}}{\partial \tilde{x} _{2}} + \frac{\partial \tilde{u}_{2}}{\partial \tilde{x}_{1}} = 0\), for a.e. \(\tilde{\mathbf{x}} = (\tilde{x}_{1},\tilde{x}_{2}) \in \tilde{\varOmega }\) with \(\tilde{\varOmega }\) defined above (A.6), \(\tilde{x} = \mathbf{B}^{-1} \mathbf{x}\). Thus \((\tilde{u}_{1}, \tilde{u}_{2})\) satisfies the Cauchy-Riemann equations on \(\tilde{\varOmega }\) and therefore \(\tilde{u}_{1} + i \tilde{u}_{2}\) is an analytic function of \(\tilde{x}_{1} + i \tilde{x}_{2}\) on \(\tilde{\varOmega }\). Also \((\tilde{u}_{1}(\tilde{\mathbf{x}}), \tilde{u} _{2}(\tilde{\mathbf{x}})) = T \mathbf{u}(\tilde{\mathbf{x}})\) and this yields (A.6).

Lemma

\(NL < 0\).

Proof of lemma

\(KT = N^{2}\), \(P^{2} = L^{2}\), \(M = L + N\) and strong ellipticity (4.6) \(P + \sqrt{KT} > |M|\) yield \(|L| + |N| > |L + N|\) which implies \(NL < 0\). □

Theorem A.4

Suppose\(\mathsf{C}\)is strongly elliptic and\(KT - N^{2} = 0, P^{2} - L^{2} = 0\). Then the complementing condition for\((\mathsf{C}, \mathbf{n})\)fails on all\(\partial \varOmega \)and the solution set\(S\)is given by (A.6). In particular\(\dim S = \infty \).

Proof

Since \(\det \mathbf{D}_{1} = \det \mathbf{D}_{2} = 0\), \(K,T,P > 0\) then \(\mathbf{D}_{1} \ge 0, \mathbf{D}_{2} \ge 0\). This implies \(\mathsf{C} \ge 0\) and Theorem A.3 yields the rest. □

This generalizes Simpson and Spector [40], Mikhlin [25] for the strongly elliptic Lame operator (cf. (2.24)) since \(KT - N^{2} = 4 \mu (\mu + \lambda )\), \(P^{2} - L^{2} = 0\), \(A = 4 \mu ^{2} (\mu + \lambda )\), \(\mu > 0\), \(2\mu + \lambda > 0\). The hypotheses of Theorem A.4 are satisfied iff \(\mu + \lambda = 0\). In fact \((\mathsf{C}, \mathbf{n})\) satisfies the complementing condition iff \(\mu + \lambda \ne 0\) by Theorem 4.4 (also Simpson and Spector [41, 43]). Then \(\mathbf{D} = \mathbf{B} = \mu \mathbf{I}\) in Theorem A.3(iv) and, by scaling out \(\mu \), we can take \(\tilde{\varOmega } = \varOmega \), \(T\mathbf{u} = \mathbf{u}\) so \(u_{1} + i u_{2}\) is an analytic function of \(x_{1} + i x_{2}\) on \(\varOmega \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simpson, H.C. The Complementing and Agmon’s Conditions in Finite Elasticity. J Elast 139, 1–35 (2020). https://doi.org/10.1007/s10659-019-09742-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-019-09742-y

Keywords

Mathematics Subject Classification

Navigation