Skip to main content
Log in

Nanoelectrokinetic Selective Preconcentration Based on Ion Concentration Polarization

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Nanoscale electrokinetic phenomenon called ion concentration polarization (ICP) has opened a new era in bio- and chemical-analysis platform due to its high efficiency and easy sample handling. In this review, the most recent advancements of selective preconcentration process using ICP were introduced. The flux balances of charged analytes were theoretically analyzed so that the behavior and the shape of preconcentrated plug were categorized into stacking/propagating and dumbbell/plug, respectively. The experimental demonstrations of these features were also given to verify the modeling. Furthermore, promising applications based on the analysis were described in this review. Lastly, future research direction would be suggested by elucidating pros and cons of ICP process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Fan, X. & White, I.M. Optofluidic microsystems for chemical and biological analysis. Nat. Photonics 2011, 5, 591–597 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Piruska, A., Gong, M., Sweedler, J.V., & Bohn, P.W. Nanofluidics in chemical analysis. Chem. Soc. Rev., 39, 1060–1072 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Joensson, H.N., Samuels, M.L., Brouzes, E.R., Medkova, M., Uhlen, M., Link, D.R., & Andersson-Svahn, H. Detection and analysis of low-abundance cell-surface biomarkers using enzymatic amplification in microfluidic droplets. Angew. Chem. Int. Ed.48, 2518–2521 (2009).

    Article  CAS  Google Scholar 

  4. Bocquet, L. & Charlaix, E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev.39, 1073–1095 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Schoch, R.B., Han, J., & Renaud, P. Transport phenomena in nanofluidics. Rev. Mod. Phys.80, 839–883 (2008).

    Article  CAS  Google Scholar 

  6. Bennett, A. Membrane technology: Developments in ultrafiltration technologies. Filtr. Sep.49, 28–33 (2012).

    Article  Google Scholar 

  7. Holt, J.K., Park, H.G., Wang, Y.M., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., Noy, A., & Bakajin, O. Fast mass transport through sub-2-nano-meter carbon nanotubes. Science312, 1034–1037 (2006).

    CAS  PubMed  Google Scholar 

  8. Akthakul, A., Hochbaum, A.I., Stellacci, F. & Mayes, A.M. Size fractionation of metal nanoparticles by membrane filtration. Adv. Mater.17, 532–535 (2005).

    Article  CAS  Google Scholar 

  9. Broyles, B.S., Jacobson, S.C., & Ramsey, J.M. Sample filtration, concentration, and separation integrated on microfluidic devices. Anal. Chem.75, 2761–2767 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Jirage, K.B., Hulteen, J.C., & Martin, C.R. Nanotubule-based molecular-filtration membranes. Science278, 655–658 (1997).

    Article  CAS  Google Scholar 

  11. Mark, D., Haeberle, S., Roth, G., von Stetten, F., & Zengerle, R. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem. Soc. Rev.39, 1153–1182 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Georgiou, H.M., Rice, G.E. & Baker, M.S. Proteomic analysis of human plasma: Failure of centrifugal ultrafiltration to remove albumin and other high molecular weight proteins. Proteomics1, 1503–1506 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Baba, M., Sano, T., Iguchi, N., Iida, K., Sakamoto, T., & Kawaura, H. DNA size separation using artificially nanostructured matrix. Appl. Phys. Lett.83, 1468–1470 (2003).

    Article  CAS  Google Scholar 

  14. Tessier, F., Labrie, J., & Slater, G.W. Electrophoretic separation of long polyelectrolytes in submolecular-size constrictions: A Monte Carlo study. Macromolecules35, 4791–4800 (2002).

    Article  CAS  Google Scholar 

  15. Culbertson, C.T., Jacobson, S.C., & Ramsey, J.M. Microchip devices for high-efficiency separations. Anal. Chem.72, 5814–5819 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Giddings, J.C., in Unified Separation Science (John Wiley & Sons, Inc., 1991), pp. 200–219.

  17. Porath, J. & Flodin, P. Gel filtration: a method for desalting and group separation. Nature183, 1657–1659 (1959).

    Article  CAS  PubMed  Google Scholar 

  18. Han, J., Fu, J., & Schoch, R.B. Molecular sieving using nanofilters: past, present and future. Lab Chip8, 23–33 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Han, J., Turner, S.W., & Craighead, H.G. Entropic trapping and escape of long DNA molecules at submicron size constriction. Phys. Rev. Lett.83, 1688–1691 (1999).

    Article  CAS  Google Scholar 

  20. Marczak, S., Smith, E., Senapati, S., & Chang, H.C. Selectivity enhancements in gel-based DNA-nano-particle assays by membrane-induced isotachophoresis: thermodynamics versus kinetics. Electrophoresis38, 2592–2602 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Schwarz, G.G.-., Bercovici, M., Marshall, L.A., & Santiago, J.G. Sample dispersion in isotachophoresis. J. Fluid Mech.679, 455–475 (2011).

    Article  Google Scholar 

  22. Jung, B., Bharadwaj, R., & Santiago, J.G. On-chip millionfold sample stacking using transient isotachophoresis. Anal. Chem.78, 2319–2327 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Janasek, D., Schilling, M., Franzke, J., & Manz, A. Isotachophoresis in free-flow using a miniaturized device. Anal. Chem.78, 3815–3819 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Gebauer, P. & Bocek, P. Recent progress in capillary isotachophoresis. Electrophoresis23, 3858–3864 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Beard, N.P., Zhang, C.-X., & deMello, A.J. In-column field-amplified sample stacking of biogenic amines on microfabricated ellectrophoresis devices. Electrophoresis24, 732–739 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Jung, B., Bharadwaj, R., & Santiago, J.G. Thousandfold signal increase using field-amplified sample stacking for on-chip electrophoresis. Electrophoresis24, 3476–3483 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Kim, S.J., Song, Y.-A., & Han, J. Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: theory, fabrication, and application. Chem. Soc. Rev.39, 912–922 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Son, S.Y., Lee, S., Lee, H., & Kim, S.J. Engineered nanofluidic preconcentration devices by ion concentration polarization. BioChip J.10, 251–261 (2016).

    Article  CAS  Google Scholar 

  29. Fu, L.M., Hou, H.H., Chiu, P.H., & Yang, R.J. Sample preconcentration from dilute solutions on micro/nanofluidic platforms: A review. Electrophoresis39, 289–310 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, Y.-C., Stevens, A.L., & Han, J. Million-fold preconcentration of proteins and peptides by nano-fluidic filter. Anal. Chem.77, 4293–4299 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Ouyang, W. & Han, J. Universal amplification-free molecular diagnostics by billion-fold hierarchical nanofluidic concentration. Proc. Natl. Acad. Sci. U. S. A.116, 16240–16249 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee, J.H., Cosgrove, B.D., Lauffenburger, D.A., & Han, J. Microfluidic concentration-enhanced celluar kinase activity assay. J. Am. Chem. Soc.131, 10340–10341 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ko, S.H., Song, Y.A., Kim, S.J., Kim, M., Han, J., & Kang, K.H. Nanofluidic preconcentration device in a straight microchannel using ion concentration polarization. Lab Chip12, 4472–4482 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Ko, S.H., Kim, S.J., Cheow, L., Li, L.D., Kang, K.H., & Han, J. Massively-parallel concentration device for multiplexed immunoassays. Lab Chip11, 1351–1358 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Cheow, L.F., Ko, S.H., Kim, S.J., Kang, K.H., & Han, J. Increase of sensitivity of ELISA using multiplexed electrokinetic preconcentrator. Anal. Chem.82, 3383–3388 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nguyen, N.-V., Wu, J.-S., & Jen, C.-P. Effects of ionic strength in the medium on sample preconcentration utilizing nano-interstices between self-assembled monolayers of gold nanoparticles. BioChip J.12, 317–325 (2018).

    Article  CAS  Google Scholar 

  37. Cheow, L.F. & Han, J.Y. Continuous signal enhancement for sensitive aptamer affinity probe electrophoresis assay using electrokinetic concentration. Anal. Chem.83, 7086–7093 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee, H., Choi, J., Jeong, E., Baek, S., Kim, H.C., Chae, J.-H., Koh, Y., Seo, S.W., Kim, J.-S. & Kim, S.J. dCas9-mediated nanoelectrokinetic direct detection of target gene for liquid biopsy. Nano Lett.18, 7642–7650 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Choi, J., Huh, K., Moon, D.J., Lee, H., Son, S.Y., Kim, K., Kim, H.C., Chae, J.-H., Sung, G.Y., Kim, H.-Y., Hong, J.W. & Kim, S.J. Selective preconcentration and online collection of charged molecules using ion concentration polarization. RSC Adv.5, 66178–66184 (2015).

    Article  CAS  Google Scholar 

  40. Probstein, R.F. Physicochemical Hydrodynamics: An Introduction (Wiley-Interscience, 1994).

  41. Zangle, T.A., Mani, A., & Santiago, J.G. Theory and experiments of concentration polarization and ion focusing at microchannel and nanochannel interfaces. Chem. Soc. Rev.39, 1014–1035 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Mani, A., Zangle, T.A., & Santiago, J.G. On the propagation of concentration polarization from microchannel-nanochannel interfaces part I: Analytical model and characteristic analysis. Langmuir25, 3898–3908 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zangle, T.A., Mani, A., & Santiago, J.G. On the propagation of concentration polarization from microchannel-nanochannel interfaces part II: Numerical and experimental study. Langmuir25, 3909–3916 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim, S.J., Wang, Y.-C., Lee, J.H., Jang, H., & Han, J. Concentration polarization and nonlinear electro-kinetic flow near nanofluidic channel. Phys. Rev. Lett.99, 044501 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Kim, M. & Kim, T. Integration of nanoporous membranes into microfluidic devices: electrokinetic biosample pre-concentration. Analyst138, 6007–6015 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Andersen, M.B., van Soestbergen, M., Mani, A., Bruus, H., Biesheuvel, P.M., & Bazant, M.Z. Current-induced membrane discharge. Phys. Rev. Lett.109, 108301 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Yossifon, G., Mushenheim, P., Chang, Y.C., & Chang, H.C. Nonlinear current-voltage characteristics of nanochannels. Phys. Rev. E79, 046305 (2009).

    Article  CAS  Google Scholar 

  48. Yang, K.D., Ko, W.R., Lee, J.H., Kim, S.J., Lee, H., Lee, M.H., & Nam, K.T. Morphology-directed selective production of ethylene or ethane from CO2 on a Cu mesopore electrode. Angew. Chem. Int. Ed.56, 796–800 (2017).

    Article  CAS  Google Scholar 

  49. Kim, J., Cho, I., Lee, H., & Kim, S.J. Ion concentration polarization by bifurcated current path. Sci Rep7, 5091 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Lee, H., Kim, J., Kim, H., Kim, H.Y., Lee, H., & Kim, S.J. A concentration-independent micro/nano-fluidic active diode using an asymmetric ion concentration polarization layer. Nanoscale9, 11871–11880 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Lee, D., Lee, J.A., Lee, H., & Kim, S.J. Spontaneous selective preconcentration leveraged by ion exchange and imbibition through nanoporous medium. Sci Rep9, 2336 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lee, J.A., Lee, D., Park, S., Lee, H., & Kim, S.J. Non-negligible water-permeance through nanoporous ion exchange medium. Sci Rep8, 12842 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Oh, Y., Lee, H., Son, S.Y., Kim, S.J., & Kim, P. Capillarity ion concentration polarization for spontaneous biomolecular preconcentration mechanism. Biomicrofluidics10, 014102 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Khair, A.S. Concentration polarization and second-kind electrokinetic instability at an ion-selective surface admitting normal flow. Phys. Flui.23, 072003 (2011).

    Article  CAS  Google Scholar 

  55. Khair, A.S. & Squires, T.M. Fundamental aspects of concentration polarization arising from nonuniform electrokinetic transport. Phys. Flui.20, 087102 (2008).

    Article  CAS  Google Scholar 

  56. Kim, S.J., Ko, S.H., Kwak, R., Posner, J.D., Kang, K.H., & Han, J. Multi-vortical flow inducing electrokinetic instability in ion concentration polarization layer. Nanoscale4, 7406–7410 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Cho, I., Kim, W., Kim, J., Kim, H.-Y., Lee, H., & Kim, S.J. Non-negligible diffusio-osmosis inside an ion concentration polarization layer. Phys. Rev. Lett.116, 254501 (2016).

    Article  PubMed  CAS  Google Scholar 

  58. W. Kim, W., Park, S., Kim, K., & Kim, S.J. Experimental verification of simultaneous desalting and molecular preconcentration by ion concentration polarization. Lab Chip17, 3841–3850 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Jin, X., Joseph, S., Gatimu, E.N., Bohn, P.W., & Aluru, N.R. Induced electrokinetic transport in micro-nanofluidic interconnect devices. Langmuir23, 13209–13222 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Pu, Q., Yun, J., Temkin, H., & Liu, S. Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett.4, 1099–1103 (2004).

    Article  CAS  Google Scholar 

  61. Li, L. & Kim, D. Propagating behavior comparison of analytes and background electrolytes in a concentration polarization process. BioChip J.11, 121–130 (2017).

    Article  CAS  Google Scholar 

  62. Kim, S.J., Li, L., & Han, J. Amplified electrokinetic response by concentration polarization near nano-fluidic channel. Langmuir25, 7759–7765 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rubinstein, S.M., Manukyan, G., Staicu, A., Rubinstein, I., Zaltzman, B., Lammertink, R.G.H., Mugele, F., & Wessling, M. Direct observation of a nonequilibrium electro-osmotic instability. Phys. Rev. Lett.101, 236101 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Mao, P. & Han, J. Massively-parallel ultra-high-aspect-ratio nanochannels as mesoporous membranes. Lab Chip9, 586–591 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Mao, P. & Han, J. Fabrication and characterization of 20 nm nanofluidic channels by glass-glass and glass-silicon bonding. Lab Chip5 837–844 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Fu, J., Mao, P., & Han, J. A nanofilter array chip for fast gel-free biomolecule separation. Appl. Phys. Lett.87, 263902 (2005).

    Article  PubMed  CAS  Google Scholar 

  67. Kim, B., Heo, J., Kwon, H.J., Cho, S.J., Han, J., Kim, S.J., & Lim, G. Tunable ionic transport for a triangular nanochannel in a polymeric nanofluidic system. ACS Nano7, 740–747 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Heo, J., Kwon, H.J., Jeon, H., Kim, B., Kim, S.J., & Lim, G. Ultra-high-aspect-orthogonal and tunable three dimensional polymeric nanochannel stack array for BioMEMS applications. Nanoscale6, 9681–9688 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Kim, S.J. & Han, J. Self-sealed vertical polymeric nanoporous junctions for high-throughput nanofluidic applications. Anal. Chem.80, 3507–3511 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee, J.H., Chung, S., Kim, S.J., & Han, J. Poly(dimethylsiloxane)-based protein preconcentration using a nanogap generated by junction gap breakdown. Anal. Chem.79, 6868–6873 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Choi, E., Wang, C., Chang, G.T., & Park, J. High current ionic diode using homogeneously charged asymmetric nanochannel network membrane. Nano Lett.16, 2189–2197 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Choi, E., Chang, H.-K., Young Lim, C., Kim, T., & Park, J. Concentration gradient generation of multiple chemicals using spatially controlled self-assembly of particles in microchannels. Lab Chip12, 3968–3975 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Huh, D., Mills, K.L., Zhu, X., Burns, M.A., Thouless, M.D., & Takayama, S. Tuneable elastomeric nanochannels for nanofluidic manipulation. Nat. Mater.6, 424–428 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Park, S.-M., Huh, Y.S., Craighead, H.G., & Erickson, D. A method for nanofluidic device prototyping using elastomeric collapse. Proc. Natl. Acad. Sci. U. S. A.106, 15549–15554 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim, P., Kim, S.J., Suh, K.-Y., & Han, J. Stabilization of ion concentration polarization using a heterogeneous nanoporous junction. Nano Lett.10, 16–23 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Park, S., Jung, Y., Son, S.Y., Cho, I., Cho, Y., Lee, H., Kim, H.-Y., & Kim, S.J. Capillarity ion concentration polarization as spontaneous desalting mechanism. Nat. Commun.7, 11223 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zaltzman, B. & Rubinstein, I. Electro-osmotic slip and electroconvective instability. J. Fluid Mech.579, 173–226 (2007).

    Article  Google Scholar 

  78. Baek, S., Choi, J., Son, S.Y., Kim, J., Hong, S., Kim, H.C., Chae, J.-H., Lee, H., & Kim, S.J. Dynamics of driftless preconcentration using ion concentration polarization leveraged by convection and diffusion. Lab Chip19, 3190–3199 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Lee, J.H., Song, Y.-A., & Han, J. Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane. Lab Chip8, 596–601 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rubinstein, I. & Zaltzman, B. Equilibrium electro-convective instability. Phys. Rev. Lett.114, 114502 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Kim, K., Kim, W., Lee, H., & Kim, S.J. Stabilization of ion concentration polarization layer using micro fin structure for high-throughput applications. Nanoscale9, 3466–3475 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Cho, I., Sung, G., & Kim, S.J. Overlimiting current through ion concentration polarization layer: Hydrodynamic convection effects. Nanoscale6, 4620–4626 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Huh, K., Yang, S.-Y., Park, J.S., Lee, J.A., Lee, H., & Kim, S.J. Surface conduction and electroosmotic flow around charged dielectric pillar arrays in microchannels. Lab Chip20, 675–686 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Alizadeh, S., Bazant, M.Z., & Mani, A. Impact of network heterogeneity on electrokinetic transport in porous media. J. Colloid Interface Sci.553, 451–464 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Lee, H., Alizadeh, S., Kim, T.J., Park, S.-m., Soh, H.T., Mani, A., & Kim, S.J. Overlimiting current in non-uniform arrays of microchannels. arXiv preprint arXiv:1910.09546 (2019).

  86. Andersen, M.B., Wang, K.M., Schiffbauer, J., & Mani, A. Confinement effects on electroconvective instability. Electrophoresis38, 702–711 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Nam, S., Cho, I., Heo, J., Lim, G., Bazant, M.Z., Moon, D.J., Sung, G.Y., & Kim, S.J. Experimental verification of overlimiting current by surface conduction and electro-osmotic flow in microchannels. Phys. Rev. Lett.114, 114501 (2015).

    Article  PubMed  CAS  Google Scholar 

  88. Sohn, S., Cho, I., Kwon, S., Lee, H., & Kim, S.J. Surface conduction in a microchannel. Langmuir34, 7916–7921 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Dydek, E.V., Zaltzman, B., Rubinstein, I., Deng, D.S., Mani, A., & Bazant, M.Z. Overlimiting current in a microchannel. Phys. Rev. Lett.107, 118301 (2011).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Basic Research Laboratory Project (NRF-2018R1A 4A1022513) by Ministry of Science and ICT. All authors acknowledge the support from BK21+ program of Creative Research Engineer Development IT, SNU.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyomin Lee or Sung Jae Kim.

Ethics declarations

Conflict of Interests The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J., Baek, S., Kim, H.C. et al. Nanoelectrokinetic Selective Preconcentration Based on Ion Concentration Polarization. BioChip J 14, 100–109 (2020). https://doi.org/10.1007/s13206-020-4109-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-020-4109-3

Keywords

Navigation