Skip to main content
Log in

Surface Sensitive Analysis Device using Model Membrane and Challenges for Biosensor-chip

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Lipid membranes and their applications in analytical biochip devices represent a great tool for the study of membrane dynamics and the related biological phenomena. Lipid-membrane-assisted surface-sensitive sensors have employed to provide biological information as they improve molecular survivability as well as rule out incorrect signals arising from unwanted nonspecific binding between target molecules with sensor surfaces. To enhance the accuracy of the signal as well as the sensitivity of biochip sensors, a variety of strategies have been employed. Here, we introduce various types of in vitro model membrane platforms/techniques and discuss current challenges in the lipid-membrane-assisted surface-sensitive analytical sensors application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Marsh, D. Lateral pressure in membranes. Biochim. Biophys. Acta, Rev. Biomembr.1286, 183–223 (1996).

    CAS  Google Scholar 

  2. McMahon, H.T. & Gallop, J.L. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature438, 590–596 (2005).

    CAS  PubMed  Google Scholar 

  3. Garcia-Saez, A.J., Chiantia, S. & Schwille, P. Effect of line tension on the lateral organization of lipid membranes. J. Biol. Chem.282, 33537–33544 (2007).

    CAS  PubMed  Google Scholar 

  4. Mukherjee, S. & Maxfield, F.R. Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic1, 203–211 (2000).

    CAS  PubMed  Google Scholar 

  5. Pomorski, T. & Menon, A.K. Lipid flippases and their biological functions. Cell. Mol. Life Sci.63, 2908–2921 (2006).

    CAS  PubMed  Google Scholar 

  6. Shaheen, S., Ahmed, F., Hossen, M.N., Ahmed, M., Amran, M. & Islam, M.A.U. Liposome as a carrier for advanced drug delivery. Pak. J. Biol. Sci.9 (2006).

  7. Korn, E.D., Bowers, B., Batzri, S., Simmons, S.R. & Victoria, E.J. Endocytosis and exocytosis: Role of microfilaments and involvement of phospholipids in membrane fusion. J. Supramol. Struct.2, 517–528 (1974).

    CAS  PubMed  Google Scholar 

  8. Daleke, D.L., Hong, K. & Papahadjopoulos, D. Endocytosis of liposomes by macrophages: Binding, acidification and leakage of liposomes monitored by a new fluorescence assay. Biochim. Biophys. Acta, Biomembr.1024, 352–366 (1990).

    CAS  Google Scholar 

  9. Xu, R., Rai, A., Chen, M., Suwakulsiri, W., Greening, D. W. & Simpson, R. J. Extracellular vesicles in cancer — implications for future improvements in cancer care. Nat. Rev. Clin. Oncol.15, 617–638 (2018).

    CAS  PubMed  Google Scholar 

  10. Siontorou, C.G., Nikoleli, G.-P., Nikolelis, D.P. & Karapetis, S.K. Artificial lipid membranes: Past, present, and future. Membranes7, 38 (2017).

    PubMed Central  Google Scholar 

  11. Macháň, R. & Hof, M. Lipid diffusion in planar membranes investigated by fluorescence correlation spectroscopy. Biochim. Biophys. Acta, Biomembr.1798, 1377–1391 (2010).

    Google Scholar 

  12. Luchini, A. & Vitiello, G. Understanding the nano-bio interfaces: Lipid-coatings for inorganic nanoparticles as promising strategy for biomedical applications. Front. Chem. (Lausanne, Switz.)7, 343 (2019).

    CAS  Google Scholar 

  13. Lee, Y.K., Lee, H. & Nam, J.-M. Lipid-nanostructure hybrids and their applications in nanobiotechnology. NPG Asia Mater.5, e48 (2013).

    CAS  Google Scholar 

  14. Rana, S., Bajaj, A., Mout, R. & Rotello, V.M. Monolayer coated gold nanoparticles for delivery applications. Adv. Drug Delivery Rev.64, 200–216 (2012).

    CAS  Google Scholar 

  15. Angelikopoulos, P., Sarkisov, L., Cournia, Z. & Gkeka, P. Self-assembly of anionic, ligand-coated nanoparticles in lipid membranes. Nanoscale9, 1040–1048 (2017).

    CAS  PubMed  Google Scholar 

  16. Chu, C.-H., Sarangadharan, I., Regmi, A., Chen, Y.-W., Hsu, C.-P., Chang, W.-H., Lee, G.-Y., Chyi, J.-I., Chen, C.-C., Shiesh, S.-C., Lee, G.-B. & Wang, Y.-L. Beyond the debye length in high ionic strength solution: Direct protein detection with field-effect transistors (fets) in human serum. Sci. Rep.7, 5256 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. Beltramo, P.J., Van Hooghten, R. & Vermant, J. Millimeter-area, free standing, phospholipid bilayers. Soft Matter12, 4324–4331 (2016).

    CAS  PubMed  Google Scholar 

  18. Janshoff, A. & Steinem, C. Mechanics of lipid bilayers: What do we learn from pore-spanning membranes? Biochim. Biophys. Acta, Mol. Cell Res.1853, 2977–2983 (2015).

    CAS  PubMed  Google Scholar 

  19. Cremer, P.S., Groves, J.T., Kung, L.A. & Boxer, S.G. Writing and erasing barriers to lateral mobility into fluid phospholipid bilayers. Langmuir15, 3893–3896 (1999).

    CAS  Google Scholar 

  20. Ryu, Y.-S., Wittenberg, N.J., Suh, J.-H., Lee, S.-W., Sohn, Y., Oh, S.-H., Parikh, A.N. & Lee, S.-D. Continuity of monolayer-bilayer junctions for localization of lipid raft microdomains in model membranes. Sci. Rep.6, 26823 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cremer, P.S. & Boxer, S.G. Formation and spreading of lipid bilayers on planar glass supports. J. Phys. Chem. B103, 2554–2559 (1999).

    CAS  Google Scholar 

  22. Moran-Mirabal, J.M., Edel, J.B., Meyer, G.D., Throckmorton, D., Singh, A.K. & Craighead, H.G. Micrometer-sized supported lipid bilayer arrays for bacterial toxin binding studies through total internal reflection fluorescence microscopy. Biophys. J.89, 296–305 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yee, C.K., Amweg, M.L. & Parikh, A.N. Membrane photolithography: Direct micropatterning and manipulation of fluid phospholipid membranes in the aqueous phase using deep-uv light. Adv. Mater.16, 1184–1189 (2004).

    CAS  Google Scholar 

  24. Stottrup, B.L., Veatch, S.L. & Keller, S.L. Nonequilibrium behavior in supported lipid membranes containing cholesterol. Biophys. J.86, 2942–2950 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Heath, G.R., Li, M., Polignano, I.L., Richens, J.L., Catucci, G., O’Shea, P., Sadeghi, S.J., Gilardi, G., Butt, J.N. & Jeuken, L.J.C. Layer-by-layer assembly of supported lipid bilayer poly-l-lysine multilayers. Biomacromolecules17, 324–335 (2016).

    CAS  PubMed  Google Scholar 

  26. Blaxter, M. Counting angels with DNA. Nature421, 122–123 (2003).

    CAS  PubMed  Google Scholar 

  27. Clelland, C.T., Risca, V. & Bancroft, C. Hiding messages in DNA microdots. Nature399, 533–534 (1999).

    CAS  PubMed  Google Scholar 

  28. Cox, J.P. Long-term data storage in DNA. Trends Biotechnol.19, 247–250 (2001).

    CAS  PubMed  Google Scholar 

  29. Cox, J.P. Bar coding objects with DNA. Analyst126, 545–547 (2001).

    CAS  PubMed  Google Scholar 

  30. Winssinger, N., Harris, J.L., Backes, B.J. & Schultz, P.G. From split-pool libraries to spatially addressable microarrays and its application to functional proteomic profiling. Angew. Chem. Int. Ed.40, 3152–3155 (2001).

    CAS  Google Scholar 

  31. Kam, L. & Boxer, S.G. Cell adhesion to protein-micropatterned-supported lipid bilayer membranes. J. Biomed. Mater. Res.55, 487–495 (2001).

    CAS  PubMed  Google Scholar 

  32. Hovis, J.S. & Boxer, S.G. Patterning and composition arrays of supported lipid bilayers by microcontact printing. Langmuir17, 3400–3405 (2001).

    CAS  Google Scholar 

  33. Kung, L.A., Kam, L., Hovis, J.S. & Boxer, S.G. Patterning hybrid surfaces of proteins and supported lipid bilayers. Langmuir16, 6773–6776 (2000).

    CAS  Google Scholar 

  34. Kang, D.H., Kim, H.N., Kim, P. & Suh, K.-Y. Poly (ethylene glycol) (peg) microwells in microfluidics: Fabrication methods and applications. BioChip J.8, 241–253 (2014).

    CAS  Google Scholar 

  35. Singer, S.J. & Nicolson, G.L. The fluid mosaic model of the structure of cell membranes. Science175, 720–731 (1972).

    CAS  PubMed  Google Scholar 

  36. Yu, J., Fischman, D.A. & Steck, T.L. Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J. Supramol. Struct.1, 233–248 (1973).

    CAS  PubMed  Google Scholar 

  37. van Meer, G., Poorthuis, B.J., Wirtz, K.W., Op den Kamp, J.A. & van Deenen, L.L. Transbilayer distribution and mobility of phosphatidylcholine in intact erythrocyte membranes. A study with phosphatidylcholine exchange protein. Eur. J. Biochem.103, 283–288 (1980).

    CAS  PubMed  Google Scholar 

  38. van Meer, G., Stelzer, E.H., Wijnaendts-van-Resandt, R.W. & Simons, K. Sorting of sphingolipids in epithelial (madin-darby canine kidney) cells. J. Cell Biol.105, 1623–1635 (1987).

    CAS  PubMed  Google Scholar 

  39. Lisanti, M.P., Sargiacomo, M., Graeve, L., Saltiel, A. R. & Rodriguez-Boulan, E. Polarized apical distribution of glycosyl-phosphatidylinositol-anchored proteins in a renal epithelial cell line. Proc. Natl. Acad. Sci. U. S. A.85, 9557–9561 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Brown, D.A. & Rose, J.K. Sorting of gpi-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell68, 533–544 (1992).

    CAS  PubMed  Google Scholar 

  41. Pike, L.J. Rafts defined: A report on the keystone symposium on lipid rafts and cell function. J. Lipid Res.47, 1597–1598 (2006).

    CAS  PubMed  Google Scholar 

  42. Simons, K. & Gerl, M.J. Revitalizing membrane rafts: New tools and insights. Nat. Rev. Mol. Cell Biol.11, 688–699 (2010).

    CAS  PubMed  Google Scholar 

  43. Huttner, W.B. & Zimmerberg, J. Implications of lipid microdomains for membrane curvature, budding and fission: Commentary. Curr. Opin. Cell Biol.13, 478–484 (2001).

    CAS  PubMed  Google Scholar 

  44. Sakuma, Y., Taniguchi, T. & Imai, M. Pore formation in a binary giant vesicle induced by cone-shaped lipids. Biophys. J.99, 472–479 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Leser, G.P. & Lamb, R.A. Influenza virus assembly and budding in raft-derived microdomains: A quantitative analysis of the surface distribution of ha, na and m2 proteins. Virology342, 215–227 (2005).

    CAS  PubMed  Google Scholar 

  46. Ikonen, E. Roles of lipid rafts in membrane transport. Curr. Opin. Cell Biol.13, 470–477 (2001).

    CAS  PubMed  Google Scholar 

  47. Waring, P., Lambert, D., Sjaarda, A., Hurne, A. & Beaver, J. Increased cell surface exposure of phosphatidylserine on propidium iodide negative thymocytes undergoing death by necrosis. Cell Death Differ.6, 624–637 (1999).

    CAS  PubMed  Google Scholar 

  48. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol.1, 31–39 (2000).

    CAS  PubMed  Google Scholar 

  49. Sprong, H., van der Sluijs, P. & van Meer, G. How proteins move lipids and lipids move proteins. Nat. Rev. Mol. Cell Biol.2, 504–513 (2001).

    CAS  PubMed  Google Scholar 

  50. Filippov, A., Orädd, G. & Lindblom, G. Sphingomyelin structure influences the lateral diffusion and raft formation in lipid bilayers. Biophys. J.90, 2086–2092 (2006).

    CAS  PubMed  Google Scholar 

  51. London, E. & Brown, D.A. Insolubility of lipids in triton x-100: Physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochim. Biophys. Acta, Biomembr.1508, 182–195 (2000).

    CAS  Google Scholar 

  52. Moller, C., Fotiadis, D., Suda, K., Engel, A., Kessler, M. & Muller, D.J. Determining molecular forces that stabilize human aquaporin-1. J. Struct. Biol.142, 369–378 (2003).

    CAS  PubMed  Google Scholar 

  53. Henderson, R.M., Edwardson, J.M., Geisse, N.A. & Saslowsky, D.E. Lipid rafts: Feeling is believing. Physiology19, 39–43 (2004).

    CAS  Google Scholar 

  54. Heberle, F.A., Petruzielo, R.S., Pan, J., Drazba, P., Kučerka, N., Standaert, R.F., Feigenson, G.W. & Katsaras, J. Bilayer thickness mismatch controls domain size in model membranes. J. Am. Chem. Soc.135, 6853–6859 (2013).

    CAS  PubMed  Google Scholar 

  55. Michel, V. & Bakovic, M. Lipid rafts in health and disease. Biol. Cell99, 129–140 (2007).

    CAS  PubMed  Google Scholar 

  56. Zhang, J., Xue, R., Ong, W.Y. & Chen, P. Roles of cholesterol in vesicle fusion and motion. Biophys. J.97, 1371–1380 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Chazal, N. & Gerlier, D. Virus entry, assembly, budding, and membrane rafts. Microbiol. Mol. Biol. Rev.67, 226–237, table of contents (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Rosa, P. & Fratangeli, A. Cholesterol and synaptic vesicle exocytosis. Commun. Integr. Biol.3, 352–353 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Rothman, J.E. & Orci, L. Budding vesicles in living cells. Sci. Am.274, 70–75 (1996).

    CAS  PubMed  Google Scholar 

  60. Pinot, M., Goud, B. & Manneville, J.B. Physical aspects of copi vesicle formation. Mol. Membr. Biol.27, 428–442 (2010).

    CAS  PubMed  Google Scholar 

  61. Votteler, J. & Sundquist, W.I. Virus budding and the escrt pathway. Cell Host Microbe14, 232–241 (2013).

    CAS  PubMed  Google Scholar 

  62. Subramaniam, A.B., Lecuyer, S., Ramamurthi, K.S., Losick, R. & Stone, H.A. Particle/fluid interface replication as a means of producing topographically patterned polydimethylsiloxane surfaces for deposition of lipid bilayers. Adv. Mater.22, 2142–2147 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ryu, Y.S., Yoo, D., Wittenberg, N.J., Jordan, L.R., Lee, S.D., Parikh, A.N. & Oh, S.H. Lipid membrane deformation accompanied by disk-to-ring shape transition of cholesterol-rich domains. J. Am. Chem. Soc.137, 8692–8695 (2015).

    CAS  PubMed  Google Scholar 

  64. Parthasarathy, R., Yu, C.-h. & Groves, J.T. Curvature-modulated phase separation in lipid bilayer membranes. Langmuir22, 5095–5099 (2006).

    CAS  PubMed  Google Scholar 

  65. Ryu, Y.-S., Jordan, L.R., Wittenberg, N.J., Kim, S. M., Yoo, D., Jeong, C., Warrington, A. E., Rodriguez, M., Oh, S.-H. & Lee, S.-D. Curvature elasticity-driven leaflet asymmetry and interleaflet raft coupling in supported membranes. Adv. Mater. Interfaces5, 1801290 (2018).

    Google Scholar 

  66. Jeong, C., Lee, S.W., Yoon, T.Y. & Lee, S.D. Water meniscus-directed organization of liquid-ordered domains in lipid monolayer. J. Nanosci. Nanotechnol.11, 4527–4531 (2011).

    CAS  PubMed  Google Scholar 

  67. Ryu, Y.-S., Lee, I.-H., Suh, J.-H., Park, S.C., Oh, S., Jordan, L.R., Wittenberg, N.J., Oh, S.-H., Jeon, N. L., Lee, B., Parikh, A.N. & Lee, S.-D. Reconstituting ring-rafts in bud-mimicking topography of model membranes. Nat. Commun.5, 4507 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ryu, Y.-S., Yun, H., Chung, T., Suh, J.-H., Kim, S., Lee, K., Wittenberg, N.J., Oh, S.-H., Lee, B. & Lee, S.-D. Kinetics of lipid raft formation at lipid monolayer-bilayer junction probed by surface plasmon resonance. Biosens. Bioelectron.142, 111568 (2019).

    CAS  PubMed  Google Scholar 

  69. Sezgin, E. & Schwille, P. Fluorescence techniques to study lipid dynamics. Cold Spring Harbor Perspect. Biol.3, a009803 (2011).

    Google Scholar 

  70. Wesolowska, O., Michalak, K., Maniewska, J. & Hendrich, A.B. Giant unilamellar vesicles — a perfect tool to visualize phase separation and lipid rafts in model systems. Acta Biochim. Pol.56, 33–39 (2009).

    PubMed  Google Scholar 

  71. Baumgart, T., Hunt, G., Farkas, E.R., Webb, W.W. & Feigenson, G. W. Fluorescence probe partitioning between lo/ld phases in lipid membranes. Biochim. Biophys. Acta, Biomembr.1768, 2182–2194 (2007).

    CAS  Google Scholar 

  72. Merritt, E.A., Sarfaty, S., van den Akker, F., L’Hoir, C., Martial, J.A. & Hol, W.G. Crystal structure of cholera toxin b-pentamer bound to receptor gm1 pentasaccharide. Protein Sci.3, 166–175 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Shi, J., Yang, T., Kataoka, S., Zhang, Y., Diaz, A.J. & Cremer, P.S. Gm1 clustering inhibits cholera toxin binding in supported phospholipid membranes. J. Am. Chem. Soc.129, 5954–5961 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Veatch, S.L. & Keller, S.L. Miscibility phase diagrams of giant vesicles containing sphingomyelin. Phys. Rev. Lett.94, 148101 (2005).

    PubMed  Google Scholar 

  75. Seong, J. Lipid rafts signaling detected by fret-based molecular biosensors. J. Korean Soc. Appl. Biol. Chem.58, 629–636 (2015).

    CAS  Google Scholar 

  76. Harder, T. & Simons, K. Caveolae, digs, and the dynamics of sphingolipid-cholesterol microdomains. Curr. Opin. Cell Biol.9, 534–542 (1997).

    CAS  PubMed  Google Scholar 

  77. Reynwar, B.J., Illya, G., Harmandaris, V.A., Müller, M.M., Kremer, K. & Deserno, M. Aggregation and vesiculation of membrane proteins by curvature- mediated interactions. Nature447, 461–464 (2007).

    CAS  PubMed  Google Scholar 

  78. Baumgart, T., Hess, S.T. & Webb, W.W. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature425, 821–824 (2003).

    CAS  PubMed  Google Scholar 

  79. Kaizuka, Y. & Groves, J.T. Bending-mediated superstructural organizations in phase-separated lipid membranes. New J. Phys.12, 095001 (2010).

    Google Scholar 

  80. Yoon, T.-Y., Jeong, C., Lee, S.-W., Kim, J.H., Choi, M.C., Kim, S.-J., Kim, M.W. & Lee, S.-D. Topographic control of lipid-raft reconstitution in model membranes. Nat. Mater.5, 281–285 (2006).

    CAS  PubMed  Google Scholar 

  81. Veatch, S.L., Leung, S.S.W., Hancock, R.E.W. & Thewalt, J.L. Fluorescent probes alter miscibility phase boundaries in ternary vesicles. J. Phys. Chem. B111, 502–504 (2007).

    CAS  PubMed  Google Scholar 

  82. Skaug, M.J., Longo, M.L. & Faller, R. The impact of texas red on lipid bilayer properties. J. Phys. Chem. B115, 8500–8505 (2011).

    CAS  PubMed  Google Scholar 

  83. Sezgin, E., Levental, I., Grzybek, M., Schwarzmann, G., Mueller, V., Honigmann, A., Belov, V.N., Eggeling, C., Coskun, U., Simons, K. & Schwille, P. Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. Biochim. Biophys. Acta, Biomembr.1818, 1777–1784 (2012).

    CAS  Google Scholar 

  84. Groves, J.T. Unveiling the membrane domains. Science313, 1901–1902 (2006).

    CAS  PubMed  Google Scholar 

  85. Rich, R.L. & Myszka, D.G. Advances in surface plasmon resonance biosensor analysis. Curr. Opin. Biotechnol.11, 54–61 (2000).

    CAS  PubMed  Google Scholar 

  86. Homola, J., Yee, S.S. & Gauglitz, G. Surface plasmon resonance sensors: Review. Sens. Actuators, B54, 3–15 (1999).

    CAS  Google Scholar 

  87. Cooper, M.A. Advances in membrane receptor screening and analysis. J. Mol. Recognit.17, 286–315 (2004).

    CAS  PubMed  Google Scholar 

  88. Lee, E.-H., Yoo, G., Jose, J., Kang, M.-J., Song, S.-M. & Pyun, J.-C. Spr biosensor based on immobilized e.Coli cells with autodisplayed z-domains. BioChip J.6, 221–228 (2012).

    CAS  Google Scholar 

  89. Margheri, G., D’Agostino, R., Del Rosso, M. & Trigari, S. Fabrication of gm3-enriched sphingomyelin/cholesterol solid-supported lipid membranes on au/sio2 plasmonic substrates. Lipids48, 739–747 (2013).

    CAS  PubMed  Google Scholar 

  90. Evans, S.V. & Roger MacKenzie, C. Characterization of protein-glycolipid recognition at the membrane bilayer. J. Mol. Recognit.12, 155–168 (1999).

    CAS  PubMed  Google Scholar 

  91. Scarano, S., Mascini, M., Turner, A.P.F. & Minunni, M. Surface plasmon resonance imaging for affinity-based biosensors. Biosens. Bioelectron.25, 957–966 (2010).

    CAS  PubMed  Google Scholar 

  92. Besenicar, M., Macek, P., Lakey, J.H. & Anderluh, G. Surface plasmon resonance in protein-membrane interactions. Chem. Phys. Lipids141, 169–178 (2006).

    CAS  PubMed  Google Scholar 

  93. Im, H., Wittenberg, N.J., Lesuffleur, A., Lindquist, N.C. & Oh, S.-H. Membrane protein biosensing with plasmonic nanopore arrays and pore-spanning lipid membranes. Chem. Sci.1, 688–696 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Yoo, R.-J. & Choi, S.-J. Identification of a peptide ligand for antibody immobilization on biosensor surfaces. BioChip J.10, 88–94 (2016).

    CAS  Google Scholar 

  95. Marquês, J.T., de Almeida, R.F.M. & Viana, A.S. Lipid bilayers supported on bare and modified gold — formation, characterization and relevance of lipid rafts. Electrochim. Acta126, 139–150 (2014).

    Google Scholar 

  96. Parkkila, P., Elderdfi, M., Bunker, A. & Viitala, T. Biophysical characterization of supported lipid bilayers using parallel dual-wavelength surface plasmon resonance and quartz crystal microbalance measurements. Langmuir34, 8081–8091 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Melby, E.S., Mensch, A.C., Lohse, S.E., Hu, D., Orr, G., Murphy, C.J., Hamers, R.J. & Pedersen, J.A. Formation of supported lipid bilayers containing phase-segregated domains and their interaction with gold nanoparticles. Environ. Sci.: Nano3, 45–55 (2016).

    CAS  Google Scholar 

  98. Zhou, X., Moran-Mirabal, J.M., Craighead, H.G. & McEuen, P.L. Supported lipid bilayer/carbon nanotube hybrids. Nat. Nanotechnol.2, 185–190 (2007).

    CAS  PubMed  Google Scholar 

  99. Groves, J.T. & Boxer, S.G. Micropattern formation in supported lipid membranes. Acc. Chem. Res.35, 149–157 (2002).

    CAS  PubMed  Google Scholar 

  100. Howland, M.C., Sapuri-Butti, A.R., Dixit, S.S., Dattelbaum, A.M., Shreve, A.P. & Parikh, A.N. Phospholipid morphologies on photochemically patterned silane monolayers. J. Am. Chem. Soc.127, 6752–6765 (2005).

    CAS  PubMed  Google Scholar 

  101. Okazaki, T., Tatsu, Y. & Morigaki, K. Phase separation of lipid microdomains controlled by polymerized lipid bilayer matrices. Langmuir26, 4126–4129 (2010).

    CAS  PubMed  Google Scholar 

  102. Huang, W., Diallo, A.K., Dailey, J.L., Besar, K. & Katz, H.E. Electrochemical processes and mechanistic aspects of field-effect sensors for biomolecules. J. Mater. Chem. C3, 6445–6470 (2015).

    CAS  Google Scholar 

  103. Oh, Y.-J., Kang, M., Park, M. & Jeong, K.-H. Engineering hot spots on plasmonic nanopillar arrays for sers: A review. BioChip J.10, 297–309 (2016).

    CAS  Google Scholar 

  104. Park, S.-G., Ahn, M.-S., Oh, Y.-J., Kang, M., Jeong, Y. & Jeong, K.-H. Nanoplasmonic biopatch for in vivo surface enhanced raman spectroscopy. BioChip J.8, 289–294 (2014).

    CAS  Google Scholar 

  105. Glazier, R. & Salaita, K. Supported lipid bilayer platforms to probe cell mechanobiology. Biochim. Biophys. Acta, Biomembr.1859, 1465–1482 (2017).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Samsung Research Funding & Incubation Center of Samsung Electronics under Project Number of SRFC-TE1903-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Sang Ryu.

Ethics declarations

Conflict of Interests The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baek, J.M., Ryu, YS. Surface Sensitive Analysis Device using Model Membrane and Challenges for Biosensor-chip. BioChip J 14, 110–123 (2020). https://doi.org/10.1007/s13206-019-4110-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-019-4110-x

Keywords

Navigation