Skip to main content
Log in

Recent Advances in Anti-inflammatory Strategies for Implantable Biosensors and Medical Implants

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Due to the global aging at an accelerated rate, demands for medical implants have been rapidly increasing. Consequently, a number of complications associated with medical implants has been reported. The complication is mainly due to foreign body response (FBR) which is a nonspecific immune response. Once the implants inserted inside the body, the immune system recognize the implant as foreign body and the immune response cause several problems that could possibly lead to mortality. Conventional approaches including medication have limitations in terms of effectiveness, thus various strategies to reduce the FBR have been studied. Herein, we review current trends of research to reduce FBR, and discuss how the strategies work and function in the body. The strategies include usage of biomaterials that have similar degree of softness to the body, effective drug delivery techniques, and biomimetic surfaces. Furthermore, the possible applications and future perspectives on the strategies will be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Onuki, Y., Bhardwaj, U., Papadimitrakopoulos, F. & Burgess, D.J. A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response. J. Diabetes Sci. Technol.2, 1003–1015 (2008).

    PubMed  PubMed Central  Google Scholar 

  2. Patel, S.R. & Lieber, C.M. Precision electronic medicine in the brain. Nat. Biotechnol.37, 1007–1012 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wilson, G.S., Zhang, Y., Reach, G., Moatti-Sirat, D., Poitout, V., Thévenot, D.R., Lemonnier, F. & Klein, J.-C. Progress toward the development of an implantable sensor for glucose. Clin. Chem.38, 1613–1617 (1992).

    CAS  PubMed  Google Scholar 

  4. do Carmo Da Costa, S.S., Neto, A.S., Costa, R., Caldas, J.G. & Filho, M.M. Incidence and risk factors of upper extremity deep vein lesions after permanent transvenous pacemaker implant: A 6-month follow-up prospective study. Pacing Clin Electrophysiol.25, 1301–1306 (2002).

    Google Scholar 

  5. Mulpuru, S.K., Madhavan, M., McLeod, C.J., Cha, Y.-M. & Friedman, P.A. Cardiac pacemakers: function, troubleshooting, and management: part 1 of a 2-part series. J. Am. Coll. Cardiol.69, 189–210 (2017).

    PubMed  Google Scholar 

  6. Belverud, S., Mogilner, A. & Schulder M. Intrathecal pumps. Neurotherapeutics5, 114–122 (2008).

    PubMed  PubMed Central  Google Scholar 

  7. Frazier, O. & Jacob, L.P. Small pumps for ventricular assistance: progress in mechanical circulatory support. Cardiol. Clin.25, 553–564 (2007).

    CAS  PubMed  Google Scholar 

  8. Katti, K.S. Biomaterials in total joint replacement. Colloids Surf., B39, 133–142 (2004).

    CAS  Google Scholar 

  9. Long M, Rack H. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials19, 1621–1639 (1998).

    CAS  PubMed  Google Scholar 

  10. Lee, H.J., Son, Y., Kim, J., Lee, C.J., Yoon, E.-S. & Cho, I.-J. A multichannel neural probe with embedded microfluidic channels for simultaneous in vivo neural recording and drug delivery. Lab Chip15, 1590–1597 (2015).

    CAS  PubMed  Google Scholar 

  11. Ratner, B.D. A pore way to heal and regenerate: 21st century thinking on biocompatibility. Regener. Biomater.3, 107–110 (2016).

    CAS  Google Scholar 

  12. Morais, J.M., Papadimitrakopoulos, F. & Burgess, D.J. Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J.12, 188–196 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Anderson, J.M., Rodriguez, A. & Chang, D.T. Foreign body reaction to biomaterials. Semin. Immunol.20, 86–100 (2008).

    CAS  PubMed  Google Scholar 

  14. Anderson, J.M. Biological responses to materials. Annu. Rev. Mater. Res.31, 81–110 (2001).

    CAS  Google Scholar 

  15. Fournier, E., Passirani, C., Montero-Menei, C. & Benoit, J. Biocompatibility of implantable synthetic polymeric drug carriers: focus on brain biocompatibility. Biomaterials24, 3311–3331 (2003).

    CAS  PubMed  Google Scholar 

  16. Cotran, R.S. & Pober, J.S. Cytokine-endothelial interactions in inflammation, immunity, and vascular injury. J. Am. Soc. Nephrol.1, 225–235 (1990).

    CAS  PubMed  Google Scholar 

  17. Jutila M.A. Leukocyte traffic to sites of inflammation. APMIS100, 191–201 (1992).

    CAS  PubMed  Google Scholar 

  18. Pober, J.S. & Cotran, R.S. The role of endothelial cells in inflammation. Transplantation50, 537–544 (1990).

    CAS  PubMed  Google Scholar 

  19. Johnston, Jr., R.B. Monocytes and macrophages. N. Engl. J. Med.318, 747–752 (1988).

    PubMed  Google Scholar 

  20. Williams, G. & Williams, W.J. Granulomatous inflammation—a review. J. Clin. Pathol.36, 723–733 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Thompson, J.A., Anderson, K.D., Di Pietro, J.M., Zwiebel, J.A., Zametta, M., Anderson, W.F. & Maciag, T. Site-directed neovessel formation in vivo. Science241, 1349–1352 (1988).

    CAS  PubMed  Google Scholar 

  22. Rhodes, N., Hunt, J. & Williams, D. Macrophage subpopulation differentiation by stimulation with biomaterials. J. Biomed. Mater. Res.37, 481–488 (1997).

    CAS  PubMed  Google Scholar 

  23. Luster, A.D. Chemokines—chemotactic cytokines that mediate inflammation. N. Engl. J. Med.338, 436–445 (1998).

    CAS  PubMed  Google Scholar 

  24. Mc. Nally, A.K., Jones, J.A., Mac. Ewan, S.R., Colton, E. & Anderson, J.M. Vitronectin is a critical protein adhesion substrate for IL-4-induced foreign body giant cell formation. J. Biomed. Mater. Res., Part A86, 535–543 (2008).

    Google Scholar 

  25. Sullivan, D.E., Ferris, M., Nguyen, H., Abboud, E. & Brody, A.R. TNF-α induces TGF-β1 expression in lung fibroblasts at the transcriptional level via AP-1 activation. J. Cell. Mol. Med.13, 1866–1876 (2009).

    PubMed  PubMed Central  Google Scholar 

  26. Sica, A. & Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest.122, 787–795 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Luttikhuizen, D.T., Harmsen, M.C. & Luyn, M.J.V. Cellular and molecular dynamics in the foreign body reaction. Tissue Eng.12, 1955–1970 (2006).

    CAS  PubMed  Google Scholar 

  28. Anderson, J.M. & Langone, J.J. Issues and perspectives on the biocompatibility and immunotoxicity evaluation of implanted controlled release systems. J. Controlled Release57, 107–113 (1999).

    CAS  Google Scholar 

  29. Tijero, M., Gabriel, G., Caro, J., Altuna, A., Hernández, R., Villa, R., Berganzo, J., Blanco, F., Salido, R. & Fernández, L. SU-8 microprobe with microelectrodes for monitoring electrical impedance in living tissues. Biosens. Bioelectron.24, 2410–2416 (2009).

    CAS  PubMed  Google Scholar 

  30. Cheung, K.C., Renaud, P., Tanila, H. & Djupsund, K. Flexible polyimide microelectrode array for in vivo recordings and current source density analysis. Biosens. Bioelectron.22, 1783–1790 (2007).

    CAS  PubMed  Google Scholar 

  31. Mercanzini, A., Cheung, K., Buhl, D.L., Boers, M., Maillard, A., Colin, P., Bensadoun, J.-C., Bertsch, A. & Renaud, P. Demonstration of cortical recording using novel flexible polymer neural probes. Sens. Actuators, A143, 90–96 (2008).

    CAS  Google Scholar 

  32. Takeuchi, S., Ziegler, D., Yoshida, Y., Mabuchi, K. & Suzuki, T. Parylene flexible neural probes integrated with microfluidic channels. Lab Chip5, 519–523 (2005).

    CAS  PubMed  Google Scholar 

  33. Altuna, A., Bellistri, E., Cid, E., Aivar, P., Gal, B., Berganzo, J., Gabriel, G., Guimerà, A., Villa, R. & Fernández, L.J. SU-8 based microprobes for simultaneous neural depth recording and drug delivery in the brain. Lab Chip13, 1422–1430 (2013).

    CAS  PubMed  Google Scholar 

  34. Lee, S.M., Byeon, H.J., Kim, B.H., Lee, J., Jeong, J.Y., Lee, J.H., Moon, J.-H., Park, C., Choi, H. & Lee S.-H. Flexible and implantable capacitive microelectrode for bio-potential acquisition. BioChip J.11, 153–163 (2017).

    CAS  Google Scholar 

  35. Trada, H.V., Vendra, V., Tinney, J.P., Yuan, F., Jackson, D.J., Walsh, K.M. & Keller, B.B. Implantable thin-film porous microelectrode array (P-MEA) for electrical stimulation of engineered cardiac tissues. BioChip J.l9, 85–94 (2015).

    CAS  Google Scholar 

  36. Huang, S.-H., Lin, S.-P. & Chen, J.-J.J. In vitro and in vivo characterization of SU-8 flexible neuroprobe: From mechanical properties to electrophysiological recording. Sens. Actuators, A216, 257–265 (2014).

    CAS  Google Scholar 

  37. Lee, K.-K., He, J., Singh, A., Massia, S., Ehteshami, G., Kim, B. & Raupp, G. Polyimide-based intracortical neural implant with improved structural stiffness. J. Micromech. Microeng.14, 32 (2003).

    Google Scholar 

  38. Chen, Y.-Y., Lai, H.-Y., Lin, S.-H., Cho, C.-W., Chao, W.-H., Liao, C.-H., Tsang, S., Chen, Y.-F. & Lin, S.-Y. Design and fabrication of a polyimide-based microelectrode array: application in neural recording and repeatable electrolytic lesion in rat brain. J. Neurosci. Methods182, 6–16 (2009).

    PubMed  Google Scholar 

  39. Suzuki, T., Mabuchi, K. & Takeuchi, S. A 3D flexible parylene probe array for multichannel neural recording. Proc of the 1rst International IEEE EMBS Conf on Neural Eng. DOI https://doi.org/10.1109/CNE.2003.1196780

  40. Wu, F., Im, M. & Yoon, E. A flexible fish-bone-shaped neural probe strengthened by biodegradable silk coating for enhanced biocompatibility. 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, TRANSDUCERS’11. DOI https://doi.org/10.1109/TRANSDUCERS.2011.5969356 (2011).

  41. Gilgunn, P., Khilwani, R., Kozai, T., Weber, D., Cui, X., Erdos, G., Ozdoganlar, O. & Fedder, G. An ultracompliant, scalable neural probe with molded biodissolvable delivery vehicle. Proceedings of the IEEE international conference on Micro Electro Mechanical Systems (MEMS). DOI https://doi.org/10.1109/MEMSYS.2012.6170092 (2012).

  42. Jeon, M., Cho, J., Kim, Y.K., Jung, D., Yoon, E.-S., Shin, S. & Cho, I.-J. Partially flexible MEMS neural probe composed of polyimide and sucrose gel for reducing brain damage during and after implantation. J. Micromech. Microeng.24, 025010 (2014).

    Google Scholar 

  43. de Vos, P., Hoogmoed, C.G. & Busscher, H.J. Chemistry and biocompatibility of alginate-PLL capsules for immunoprotection of mammalian cells. J. Biomed. Mater. Res.60, 252–259 (2002).

    CAS  PubMed  Google Scholar 

  44. Khor, E. & Lim, L.Y. Implantable applications of chitin and chitosan. Biomaterials24, 2339–2349 (2003).

    CAS  PubMed  Google Scholar 

  45. de Vos, P., de Haan, B., Wolters, G., Strubbe, J. & van Schilfgaarde, R. Improved biocompatibility but limited graft survival after purification of alginate for microencapsulation of pancreatic islets. Diabetologia40, 262–270 (1997).

    CAS  PubMed  Google Scholar 

  46. Lee, Y.M., Kim, S. & Kim, S. Synthesis and properties of poly (ethylene glycol) macromer/β-chitosan hydrogels. J. Mater. Sci.: Mater. Med.8, 537–541 (1997).

    CAS  Google Scholar 

  47. Gupta, K. & Kumar, M.N.R. pH dependent hydrolysis and drug release behavior of chitosan/poly (ethylene glycol) polymer network microspheres. J. Mater. Sci.: Mater. Med.12, 753–759 (2001).

    CAS  Google Scholar 

  48. Turner, R.F., Harrison, D.J. & Rojotte, R.V. Preliminary in vivo biocompatibility studies on perfluorosulphonic acid polymer membranes for biosensor applications. Biomaterials12, 361–368 (1991).

    CAS  PubMed  Google Scholar 

  49. Zhang, Y. & Wilson, G.S. In vitro and in vivo evaluation of oxygen effects on a glucose oxidase based implantable glucose sensor. Anal. Chim. Acta281, 513–520 (1993).

    CAS  Google Scholar 

  50. Hetrick, E.M. & Schoenfisch, M.H. Reducing implant-related infections: active release strategies. Chem. Soc. Rev.35, 780–789 (2006).

    CAS  PubMed  Google Scholar 

  51. Ward, W.K., Slobodzian, E.P., Tiekotter, K.L. & Wood, M.D. The effect of microgeometry, implant thickness and polyurethane chemistry on the foreign body response to subcutaneous implants. Biomaterials23, 4185–4192 (2002).

    CAS  PubMed  Google Scholar 

  52. Quinn, C.P., Pathak, C.P., Heller, A. & Hubbell, J.A. Photo-crosslinked copolymers of 2-hydroxyethyl methacrylate, poly (ethylene glycol) tetra-acrylate and ethylene dimethacrylate for improving biocompatibility of biosensors. Biomaterials16, 389–396 (1995).

    CAS  PubMed  Google Scholar 

  53. Abraham, A.A., Means, A.K., Clubb, Jr., F.J., Fei, R., Locke, A.K., Gacasan, E.G., Coté, G.L. & Grunlan, M.A. Foreign body reaction to a subcutaneously implanted self-cleaning, thermoresponsive hydrogel membrane for glucose biosensors. ACS Biomater. Sci. Eng.4, 4104–4111 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Dolwick, M.F. & Aufdemorte, T.B. Silicone-induced foreign body reaction and lymphadenopathy after temporomandibular joint arthroplasty. Oral Surg., Oral Med., Oral Pathol.59, 449–452 (1985).

    CAS  Google Scholar 

  55. Shaik IH, Gandrapu B, Gonzalez-Ibarra F, Flores D, Matta J, Syed AK. Silicone breast implants: a rare cause of pleural effusion. Case Rep. Pulmonol.2015, 652918 (2015).

    PubMed  PubMed Central  Google Scholar 

  56. Lee, J.S., Shin, B.H., Yoo, B.Y., Nam, S.-Y., Lee, M., Park, H., Choy, Y.B., Heo, C.Y. & Koh, W.-G. Modulation of Foreign Body Reaction Against PDMS Implant by Grafting Topographically Different Poly (Acrylic Acid) Micropatterns. Macromol. Biosci.19, 1900206 (2019).

    CAS  Google Scholar 

  57. Kastellorizios, M., Tipnis, N. & Burgess, D.J. Foreign body reaction to subcutaneous implants. Immune Responses to Biosurfaces pp.93–108 Springer (2015).

  58. Cain, D.W. & Cidlowski, J.A. Immune regulation by glucocorticoids. Nat. Rev. Immunol.17, 233–247 (2017).

    CAS  PubMed  Google Scholar 

  59. Abraham, S.M., Lawrence, T., Kleiman, A., Warden, P., Medghalchi, M., Tuckermann, J., Saklatvala, J. & Clark, A.R. Antiinflammatory effects of dexamethasone are partly dependent on induction of dual specificity phosphatase 1. J. Exp. Med.203, 1883–1889 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bhardwaj, U., Papadimitrakopoulos, F. & Burgess, D.J. A review of the development of a vehicle for localized and controlled drug delivery for implantable biosensors. J. Diabetes Sci. Technol.2, 1016–1029 (2008).

    PubMed  PubMed Central  Google Scholar 

  61. Gancedo, M., Ruiz-Corro, L., Salazar-Montes, A., Rincón, A.R. & Armendáriz-Borunda, J. Pirfenidone prevents capsular contracture after mammary implantation. Aesthetic Plastic Surgery32, 32–40 (2008).

    PubMed  Google Scholar 

  62. Rujitanaroj, P.-o., Jao, B., Yang, J., Wang, F., Anderson, J.M., Wang, J. & Chew, S.Y. Controlling fibrous capsule formation through long-term down-regulation of collagen type I (COL1A1) expression by nanofiber-mediated siRNA gene silencing. Acta Biomater.9, 4513–4524 (2013).

    CAS  PubMed  Google Scholar 

  63. Takahashi, H., Wang, Y. & Grainger, D.W. Device-based local delivery of siRNA against mammalian target of rapamycin (mTOR) in a murine subcutaneous implant model to inhibit fibrous encapsulation. J. Controlled Release147, 400–407 (2010).

    CAS  Google Scholar 

  64. Basit, A.W. Advances in colonic drug delivery. Drugs65, 1991–2007 (2005).

    CAS  PubMed  Google Scholar 

  65. Malachowski, K., Breger, J., Kwag, H.R., Wang, M.O., Fisher, J.P., Selaru, F.M. & Gracias, D.H. Stimuli-responsive theragrippers for chemomechanical controlled release. Angew. Chem. Int. Ed.53, 8045–8049 (2014).

    CAS  Google Scholar 

  66. Zhang, L., Wang, Y., Yang, Y., Liu, Y., Ruan, S., Zhang Q, Tai, X., Chen, J., Xia, T. & Qiu, Y. High tumor penetration of paclitaxel loaded pH sensitive cleavable liposomes by depletion of tumor collagen I in breast cancer. ACS Appl. Mater. Interfaces7, 9691–9701 (2015).

    CAS  PubMed  Google Scholar 

  67. Hu, C.-M.J., Fang, R.H., Luk, B.T. & Zhang, L. Polymeric nanotherapeutics: clinical development and advances in stealth functionalization strategies. Nanoscale6, 65–75 (2014).

    CAS  PubMed  Google Scholar 

  68. Vicent, M.J. & Duncan, R. Polymer conjugates: nanosized medicines for treating cancer. Trends Biotechnol.24, 39–47 (2006).

    CAS  PubMed  Google Scholar 

  69. Wu, Y., Zhou, D., Zhang, Q., Xie, Z., Chen, X., Jing, X. & Huang, Y. Dual-sensitive charge-conversional polymeric prodrug for efficient codelivery of demethylcantharidin and doxorubicin. Biomacromolecules17, 2650–2661 (2016).

    CAS  PubMed  Google Scholar 

  70. Soni, K.S., Desale, S.S. & Bronich, T.K. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J. Controlled Release240, 109–126 (2016).

    CAS  Google Scholar 

  71. Oh, J.K., Drumright, R., Siegwart, D.J. & Matyjaszewski K. The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci.33, 448–477 (2008).

    CAS  Google Scholar 

  72. Pan, Y.-J., Li, D., Jin, S., Wei, C., Wu, K.-Y., Guo, J. & Wang, C.-C. Folate-conjugated poly (N-(2-hydroxypropyl) methacrylamide-co-methacrylic acid) nanohydrogels with pH/redox dual-stimuli response for controlled drug release. Polym. Chem.4, 3545–3553 (2013).

    CAS  Google Scholar 

  73. Chiang, Y.-T. & Lo, C.-L. pH-responsive polymer-liposomes for intracellular drug delivery and tumor extracellular matrix switched-on targeted cancer therapy. Biomaterials35, 5414–5424 (2014).

    CAS  PubMed  Google Scholar 

  74. Santini, Jr., J.T., Cima, M.J. & Langer, R. A controlled-release microchip. Nature397, 335 (1999).

    CAS  PubMed  Google Scholar 

  75. Gensler, H., Sheybani, R., Li, P.-Y., Mann, R.L. & Meng, E. An implantable MEMS micropump system for drug delivery in small animals. Biomed. Microdevices14, 483–496 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Farra, R., Sheppard, N.F., McCabe, L., Neer, R.M., Anderson, J.M., Santini, J.T., Cima, M.J. & Langer, R. First-in-human testing of a wirelessly controlled drug delivery microchip. Sci. Transl. Med.4, 122 ra121 (2012).

    Google Scholar 

  77. Lee, S.H., Lee, Y.B., Kim, B.H., Lee, C., Cho, Y.M., Kim, S.-N., Park, C.G., Cho, Y.-C. & Choy, Y.B. Implantable batteryless device for on-demand and pulsatile insulin administration. Nat. Commun.8, 15032 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Barthlott, W. & Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta202, 1–8 (1997).

    CAS  Google Scholar 

  79. Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J., Song, Y., Liu, B., Jiang, L. & Zhu, D. Super-hydrophobic surfaces: from natural to artificial. Adv. Mater.14, 1857–1860 (2002).

    CAS  Google Scholar 

  80. Kim, H., Han, H., Lee, S., Woo, J., Seo, J. & Lee, T. Nonfluorinated Superomniphobic Surfaces through Shape-Tunable Mushroom-like Polymeric Micropillar Arrays. ACS Appl. Mater. Interfaces11, 5484–5491 (2018).

    Google Scholar 

  81. Shin, S., Seo, J., Han, H., Kang, S., Kim, H. & Lee, T. Bio-inspired extreme wetting surfaces for biomedical applications. Materials9, 116 (2016).

    PubMed Central  Google Scholar 

  82. Tuteja, A., Choi, W., Ma, M., Mabry, J.M., Mazzella, S.A., Rutledge, G.C., McKinley, G.H. & Cohen, R.E. Designing superoleophobic surfaces. Science318, 1618–1622 (2007).

    CAS  PubMed  Google Scholar 

  83. Tuteja, A., Choi, W., Mabry, J.M., McKinley, G.H. & Cohen, R.E. Robust omniphobic surfaces. Proc. Natl. Acad. Sci. U. S. A.105, 18200–18205 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Seo, J., Lee, S.-K., Lee, J., Lee, J.S., Kwon, H., Cho, S.-W., Ahn, J.-H. & Lee, T. Path-programmable water droplet manipulations on an adhesion controlled superhydrophobic surface. Sci. Rep.5, 12326 (2015).

    PubMed  PubMed Central  Google Scholar 

  85. Seo, J., Lee, S., Lee, J. & Lee, T. Guided transport of water droplets on superhydrophobic—hydrophilic patterned Si nanowires. ACS Appl. Mater. Interfaces3, 4722–4729 (2011).

    CAS  PubMed  Google Scholar 

  86. Seo, J., Lee, S., Han, H., Jung, H.B., Hong, J., Song, G., Cho, S.M., Park, C., Lee, W. & Lee, T. Gasdriven ultrafast reversible switching of super-hydrophobic adhesion on palladium-coated silicon nanowires. Adv. Mater.25, 4139–4144 (2013).

    CAS  PubMed  Google Scholar 

  87. Han, H., Lee, J.S., Kim, H., Shin, S., Lee, J., Kim, J., Hou X, Cho, S.-W., Seo, J. & Lee, T. Single-droplet multiplex bioassay on a robust and stretchable extreme wetting substrate through vacuum-based droplet manipulation. ACS nano12, 932–941 (2018).

    CAS  PubMed  Google Scholar 

  88. Nhung Nguyen, T.P., Brunet, P., Coffinier, Y. & Boukherroub, R. Quantitative testing of robustness on superomniphobic surfaces by drop impact. Langmuir26, 18369–18373 (2010).

    Google Scholar 

  89. Shafrin, E.G. & Zisman, W.A. Constitutive relations in the wetting of low energy surfaces and the theory of the retraction method of preparing monolayers1. J. Phys. Chem.64, 519–524 (1960).

    CAS  Google Scholar 

  90. Bocquet, L. & Lauga, E. A smooth future? Nat. Mater.10, 334 (2011).

    CAS  PubMed  Google Scholar 

  91. Scholz, I., Bückins, M., Dolge, L., Erlinghagen, T., Weth, A., Hischen, F., Mayer, J., Hoffmann, S., Riederer, M. & Riedel, M. Slippery surfaces of pitcher plants: Nepenthes wax crystals minimize insect attachment via microscopic surface roughness. J. Exp. Biol.213, 1115–1125 (2010).

    CAS  PubMed  Google Scholar 

  92. Wong, T.-S., Kang, S.H., Tang, S.K., Smythe, E.J., Hatton, B.D., Grinthal, A. & Aizenberg, J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature477, 443 (2011).

    CAS  PubMed  Google Scholar 

  93. Cronin, R.E. & Reilly, R.F. Unfractionated heparin for hemodialysis: still the best option. Seminars in dialysis23, 510–515 (2010).

    PubMed  PubMed Central  Google Scholar 

  94. Peppas, N.A. & Langer, R. New challenges in biomaterials. Science263, 1715–1720 (1994).

    CAS  PubMed  Google Scholar 

  95. HND AD, Ashraf S. Low heparinization with heparin-bonded bypass circuits: is it a safe strategy? Ann. Thorac. Surg.63, 663–668 (1997).

    Google Scholar 

  96. Lobato, R.L., Despotis, G.J., Levy, J.H., Shore-Lesserson, L.J., Carlson, M.O. & Bennett-Guerrero, E. Anticoagulation management during cardiopulmonary bypass: a survey of 54 North American institutions. J. Thorac. Cardiovasc. Surg.139, 1665–1666 (2010).

    PubMed  Google Scholar 

  97. Leslie, D.C., Waterhouse, A., Berthet, J.B., Valentin, T.M., Watters, A.L., Jain, A., Kim, P., Hatton, B.D., Nedder, A. & Donovan, K. A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling. Nat. Biotechnol.32, 1134–1140 (2014).

    CAS  PubMed  Google Scholar 

  98. Lee, J.H., Go, A.K., Oh, S.H., Lee, K.E. & Yuk, S.H. Tissue anti-adhesion potential of ibuprofen-loaded PLLA-PEG diblock copolymer films. Biomaterials26, 671–678 (2005).

    CAS  PubMed  Google Scholar 

  99. Hensman, C., Baty, D., Willis, R. & Cuschieri, A. Chemical composition of smoke produced by high-frequency electrosurgery in a closed gaseous environment. Surg. Endosc.12, 1017–1019 (1998).

    CAS  PubMed  Google Scholar 

  100. Rondinone, J., Brassell, J., Miller III, S.A., Thorne, J.O., Rondinone, D.M., Safabash, J. & Vega F. New electrosurgical ball electrode with nonstick properties. Proc. SPIE 3249, Surgical Applications of Energy. DOI https://doi.org/10.1117/12.304338 (1998).

  101. Kang, S.K., Kim, P.Y., Koo, I.G., Kim, H.Y., Jung, J.C., Choi, M.Y., Lee, J.K. & Collins, G.J. Nonstick polymer coatings for energy-based surgical devices employed in vessel sealing. Plasma Processes Polym.9, 446–452 (2012).

    CAS  Google Scholar 

  102. Ceviker, N., Keskil, S. & Baykaner, K. A new coated bipolar coagulator. Acta Neurochir.140, 619–620 (1998).

    CAS  PubMed  Google Scholar 

  103. Mikami, T., Minamida, Y., Koyanagi, I. & Houkin, K. Novel bipolar forceps with protein repellence using gold—polytetrafluoroethylene composite film. Operative Neurosurgery60, ONS–157–ONS–161 (2007).

    Google Scholar 

  104. Zhang, P., Chen, H., Zhang, L. & Zhang, D. Anti-adhesion effects of liquid-infused textured surfaces on high-temperature stainless steel for soft tissue. Appl. Surf. Sci.385, 249–256 (2016).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was also supported (in part) by the Yonsei University Future-leading Research Initiative of 2019 (RMS2 2019-22-0014) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1C1006720).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungmok Seo.

Ethics declarations

Conflict of Interests The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D., Park, K. & Seo, J. Recent Advances in Anti-inflammatory Strategies for Implantable Biosensors and Medical Implants. BioChip J 14, 48–62 (2020). https://doi.org/10.1007/s13206-020-4105-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-020-4105-7

Keywords

Navigation