Skip to main content
Log in

Biodeterioration of archaeological monuments of Taxila, Pakistan

This article belongs to the special issue “Aerobiology for the Preservation of Human and Environmental Health” published in the Volume 36, Issue 1, March 2020

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

The present research was conducted to assess the role of aeromycoflora around world heritage sites of Taxila and its relation with biodeterioration of stone monuments. The aerial mycoflora of six archaeological sites was recorded for one year to monitor the seasonal variations and transportation of fungal spores. Thirty-two fungal species belonging to twenty genera were isolated throughout the whole sampling period. The fungal genera Alternaria, Aspergillus, Cladosporium, Fusarium, Mucor, Helminthosporium, Curvularia and Penicillium were prevalent, whereas at species level Alternaria alternata was dominant followed by Aspergillus niger, Cladosporium herbarum, Penicillium chrysogenum and Fusarium oxysporum. A well-marked qualitative and quantitative seasonal variation in aeromycoflora of selected sites was recorded. Some fungal species showed restricted occurrence to a specific archaeological site of Taxila. The comparative study of aerial and surface mycoflora revealed that dominant aerial fungal species were involved in biodeterioration of monuments. The chemical composition of fungal patinas and biofilm was also carried out, and it was found that calcite, gypsum and calcium oxalate were the main minerals detected by X-ray diffraction technique. The dominant fungal species were also determined for their ability to produce organic acids in broth medium. The fungal species produce a significant amount of citric acid, acetic acid, oxalic acid, fumaric acid and gluconic acid. The different surface alterations of archaeological monuments of Taxila are due to the metabolic activities of fungal species growing on it. The present study is the first investigation about microbial decay of stone monuments of Taxila, and the results of this study will help to make a strategy for prevention of further biodeterioration of these monuments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aira, M. J., Jato, V., Stchigel, A. M., Rodriguez-Rajo, F. J., & Iontelli, E. (2007). Aeromycological study in the Cathedral of Santiago de Comostela (Spain). International Biodeterioration and Biodegradation, 60, 231–237.

    Article  CAS  Google Scholar 

  • Arai, H. (2000). Foxing caused by fungi. Twenty five years of study. International Biodeterioration and Biodegradation, 46, 181–188.

    Article  CAS  Google Scholar 

  • Ascaso, C., Sancho, L. G., & Rogriguez-Pascual, C. (1990). The weathering action of Saxicolon Lichens in maritime Antarctica. Polar Biology, 11, 33–39.

    Article  Google Scholar 

  • Claudia, C., & Pinna, D. (1992). Calcium oxalate films on stone monuments. Microbiological Investigation, 8, 33–37.

    Google Scholar 

  • Dakal, T. C., & Cameotra, S. S. (2011). Geomicrobiology of cultural monuments and art works mechanism of biodeterioration, bioconservation strategies and allied molecular approaches. In A. C. Mason (Ed.), Bioremediation: Biotechnology, engineering, and environment management. New York: Nova Science Publishers.

    Google Scholar 

  • De la Torre, M. A., Gonzalo, G., Vizcaino, C., & Garcia, M. T. (1993). Biochemical mechanisms of stone alteration carried out by filamentous fungi living in monuments. Biogeochemistry, 19, 129–147.

    Article  Google Scholar 

  • Domsch, K. H., Gams, W., & Anderson, T. H. (2007). Compendium of soil fungi. London: Academic Press.

    Google Scholar 

  • Dubey, S., & Jain, S. K. (2014). Effect of humidity on fungal deteriogens of ancient monuments. International Research Journal of Biological Sciences, 3(4), 84–86.

    Google Scholar 

  • Eckhardt, F. E. W. (1985). Mechanisms of microbial degradation of minerals in sandstone monuments, mediaeval frescoes and plaster. In Felix, G. (Ed.) Proceeding of 5th international congress on deterioration and conservation of stone (Vol. 2, pp. 643–652). Lausanne, Switzerland: Presses Polytechniques Romandes.

  • Edwards, H. G. M., Russel, N. C., Seaward, M. R. D., & Slark, D. (1995). Lichen biodeterioration under different micro climates: A Ft Raman spectroscopic study. Spectrochimica Acta, 51, 2091–2100.

    Article  Google Scholar 

  • Ettenauer, J., Sterflinger, K., & Piner, G. (2010). Cultivation and molecular monitoring of halophilic microorganisms inhabiting an extreme environment presented by a salt-attacked monument. International Journal of Astrobiology, 9, 59–72.

    Article  CAS  Google Scholar 

  • Garcia- Valles, M., Vendrell-Saz, M., Molera, J., & Blazques, F. (2004). Interaction of rock and atmosphere; Patinas on Mediterranean monuments. Environmental Geology, 36(1–2), 137–149.

    Google Scholar 

  • Gomez-Alarcon, G., Munoz, M. L., & Flores, M. (1994). Excretion of organic acids by fungal strains isolated from decayed limestone. International Biodeterioration and Biodegradation, 34, 169–1180.

    Article  CAS  Google Scholar 

  • Gorbushina, A. A., Whitehead, K., Dornieden, T., Niesse, A., Schulte, A., & Hedges, J. I. (2003). Black fungal colonies as units of Survival; hyphal Mycosporine synthesized by rock-dwelling micro colonial fungi. Canadian Journal of Botany, 81(2), 131–138.

    Article  CAS  Google Scholar 

  • Griffin, P. S., Indicator, N., & Koestler, R. J. (1991). The biodeterioration of stone: A Review of deterioration mechanisms, conservation case histories and treatment. International Biodeterioration, 28(1–4), 187–207.

    Article  Google Scholar 

  • Grossi, C. M., Brimblecombe, P., Esbert, R. M., & Alonso, F. J. (2006). Color changes in architectural lime stones from pollution and cleaning. Color Research and Application, 32, 320–331.

    Article  Google Scholar 

  • Harley, A. D., & Gilkes, R. J. (2000). Factors influencing the release of plant nutrient elements from silicate rock powders: A geochemical overview. Nutrient Cycling in Agrosystem, 56, 11–36.

    Article  CAS  Google Scholar 

  • Jain, K. K., & Mishra, A. K. (2000). Role of fungi in the deterioration of wall paintings. Science of the Total Environment, 167, 255–271.

    Google Scholar 

  • Koyano, M. (1993). Fungal contamination of Japanese painting stored in Japan. In Biodeterioration of cultural property: Proceeding of 2nd international conference, Yokohama, Japan (pp. 570–581).

  • Kurcozkin, J., Bode, K., Peteresen, K., & Krumbein, W. E. (1988). Some physiological characteristics of fungi isolated from sandstone. In 55th international congress on deterioration and conservation of stone, supplement (pp. 21–50) (Torun: Nicholas Copernicus University, Press Department).

  • Lopez, F. F., & Gomez, E. F. (1996). Simultaneous determination of the major organic acids, sugars, glycol and ethanol by HPLC in Grape musts and white wines. Journal of Chromatographic Science, 34(28), 301–305.

    Google Scholar 

  • Maghazy, S. M. N., Abdel-Zaher, H. M. A., & El-Gendy, Z. K. H. (2010). Indoor aeromycobiota of monumental sites in Minia Governorate. Journal of Basic and Applied Mycology, 3, 49–59.

    Google Scholar 

  • Maria, P. D. B., Maddalena, D. G., Paola, C., Claudia, E., & Aldo, L. (1999). Microbial formation of oxalate films on monuments surface. Bioprotection or biodeterioration. Geomicrobiology, 16(1), 55–64.

    Article  Google Scholar 

  • Martino, E., Pandi, L., Fenoglio, I., Bonfate, P., Perotto, S., & Fubini, B. (2003). Soil fungal hyphae bind and attackasbestos fibers. Angewandte Chemie, 42, 219–222.

    Article  CAS  Google Scholar 

  • Monte, M. (2003). Oxalate film formation on marble specimens caused by fungus. Journal of Cultural Heritage, 4, 255–258.

    Article  Google Scholar 

  • Nilson, S. (1983). Atlas of Airborne fungal spores in Europe. Germany: Springer.

    Google Scholar 

  • Oliveira, M., Ribeiro, H., Delgado, J. L., & Abreu, I. (2009). The effects of meteorological factors on airborne fungal spore concentration in two areas differing in urbanisation level. International Journal of Biometeorology, 53, 61–73.

    Article  CAS  Google Scholar 

  • Ortega-Calvo, J. J., Arino, X., Hernandez-Marine, M., & Saiz-Jimenez, C. (1995). Factors affecting the weathering and colonization of monuments by phototrophic microorganisms. Science of Total the Environment, 167, 329–341.

    Article  CAS  Google Scholar 

  • Pandey, K. W. (1998). Dynamics of air mycoflora over ragi field at Almara. Indian Journal of Mycology and Plant Pathology, 18(22), 200–201.

    Google Scholar 

  • Pasanen, A. L., Kasanen, J. P., Rautiala, S., Ikaheimo, M., Rantamaki, J., Koarianen, H., et al. (2000). Fungal growth and Survival in building materials under fluctuating moisture and temperature conditions. International Biodeterioration and Biodegradation, 46, 117–127.

    Article  Google Scholar 

  • Picco, A. M., & Marinella, R. (2000). Airborne fungi as biocontaminants at two Milan underground stations. International Biodeterioration and Biodegradation, 45, 43–47.

    Article  Google Scholar 

  • Ramirez, C. (1982). Manual and atlas of the Penicillia. Amsterdam: Elsevier Biomedical Press.

    Google Scholar 

  • Ruga, L., Orlandi, F., Romano, B., & Fornaciari, M. (2015). The assessment of fungal bioaerosols in the crypt of St. Peter in Perugia (Italy). International Biodeterioration and Biodegradation, 98, 121–130.

    Article  Google Scholar 

  • Shah, M. H., & Bashir, U. (2008). Airborne mycoflora of Rohtas Fort. Mycopathology, 6(1&2), 71–73.

    Google Scholar 

  • Sharma, K., & Lanjewar, S. (2010). Biodeterioration of Ancient Monument (Devarbija) of Chhattisgarh by Fungi. Journal of Phytology, 2(11), 47–49.

    Google Scholar 

  • Steige, M., Charola, A. E., & Sterflinger, K. (2011). Weathering and deterioration. In S. Siegemud & R. Snethlage (Eds.), Architecture (pp. 291–304). Heidelberg: Springer.

    Google Scholar 

  • Strzelczyk, A. B. (2004). Observation on aesthetic and structural changes induced in Polish historic objects by microorganisms. International Biodeterioration and Biodegradation, 53, 151–156.

    Article  Google Scholar 

  • Tayler, S., & May, E. (1995). A comparison of methods for the measurement of microbial activity on stone. Studies in Conservation, 40, 163–170.

    Google Scholar 

  • Urzi, C., & Realini, M. (1998). Colour changes of Noto’s calcareous Sandstone related with in colonization by microorganisms. International Biodeterioration and Biodegradation, 42, 45–54.

    Article  Google Scholar 

  • Videla, H. A., Guiamet, P. S., & Gomez de Saravia, S. (2000). Biodeterioration of Mayan archaeological sites in the Yucatan Peninsula, Mexico. International Biodeterioration and Biodegradation, 46, 335–341.

    Article  CAS  Google Scholar 

  • Warscheid, T., & Braams, J. (2000). Biodeterioration of stone: A review. International Biodeterioration and Biodegradation, 46, 343–368.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Farooq.

Additional information

The special issue can be found in https://link.springer.com/journal/10453/36/1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farooq, M., Maknoon, S.D. Biodeterioration of archaeological monuments of Taxila, Pakistan. Aerobiologia 36, 375–385 (2020). https://doi.org/10.1007/s10453-020-09639-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-020-09639-7

Keywords

Navigation