Skip to main content

Advertisement

Log in

Advancement in biogas production from the solid waste by optimizing the anaerobic digestion

  • Review
  • Published:
Waste Disposal & Sustainable Energy Aims and scope Submit manuscript

A Correction to this article was published on 27 August 2021

This article has been updated

Abstract

The crisis of fossil fuel and their negative impact on the environment has caused concern among the scientific communities leading them to look around for renewable sources of energy. This review has emphasized the efficient utilization of organic municipal solid waste as well as agriculture waste in an anaerobic digester for the production of biogas as a sustainable renewable energy. Recent advances in biogas production along with previous research work have been discussed to offer a comprehensive synopsis of the accumulated knowledge. This review also elucidates about the design of an anaerobic digester, the prospect of anaerobic digestion and opportunity in new advances in technology. Biogas is one of the most accepted sustainable renewable energy. The characterization, elimination of contaminants, pretreatment, anaerobic digestion in optimum condition and utilization of energy crops enhanced the efficiency of an anaerobic digester. Pretreatment of segregated organic solid waste increased its putrescibility and further biogas production. The optimized parameters in this review were pH, temperature, loading rate, C/N ratio and solid/liquid ratio of the feedstock. The flow rate of the feedstock was optimized according to the available volume of the digester, residence time and the characteristics of the feedstock. The design of an anaerobic digester should be preferably cylindrical in shape, with a diameter ranging from 6 to 40 m, the depth ranging from 7.5 to 15 m and the conical floor having a slope around 15%. A comprehensive reform in technical, economic, and social policies is essential to accomplish a sustainable energy system considering biogas as a future renewable energy. The flowsheet of the biogas and methanol production has been given in Fig. 1.

Flowsheet of the biogas and methanol production

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

Abbreviations

NH3 :

Ammonia

AD:

Anaerobic digester

AW:

Agriculture waste

HCO3 :

Bicarbonate ion

BMP:

Biochemical methane potential

BOD:

Biochemical oxygen demand

BDVS:

Biodegradable volatile solid

BTHD:

Batch tunnel horizontal digester

COD:

Chemical oxygen demand

CVPF:

Continuous vertical plug flow digester

CO2 :

Carbon dioxide

CSTR:

Continuous stirred tank reactor

EC:

Energy crops

EGSB:

Expanded granular sludge bed reactor

HRT:

Hydraulic retention time

IC:

Internal circulation reactor

CH4 :

Methane

MSW:

Municipal solid waste

ORP:

Oxidation reduction potential

pH:

Potentia of hydrogen ion

SRT:

Solid retention time

UASB:

Upflow anaerobic sludge blanket reactor

VS:

Volatile solid

VFA:

Volatile fatty acid

References

  1. Srivastava SK, Ramanathan AL. Assessment of landfills vulnerability on the groundwater quality located near floodplain of the perennial river and simulation of contaminant transport. Model Earth Syst Environ. 2018;4(2):729–52. https://doi.org/10.1007/s40808-018-0464-7.

    Article  Google Scholar 

  2. National Non-Food Crops Center. NNFCC renewable fuels and energy, anaerobic digestion factsheet. http://www.nnfcc.co.uk/publications/nnfcc-renewable-fuel-and-energy-factsheet-anaerobi-digestion. Accessed 19 Oct 2018.

  3. Witt J, Magdowski A, Janzczik S, et al. ErneuerbareEnergien—Globaler Stand 2016. BWK. 2017;69(07/08):6–28.

    Google Scholar 

  4. Appels L, Baeyens J, Degreve J, et al. Principles and potential of the anaerobic digestion of waste activated sludge. Prog Energ Combust Sci. 2008;34:755–81.

    Article  CAS  Google Scholar 

  5. Deuker A, Stinner W, Leithold G. Biogas energy from agricultural by-products: energy yields and effects on organic farming systems compared with energy maize cropping. In: Behnassi M, Draggan S, Yaya S, editors. Global food insecurity. Dordrecht: Springer; 2011. pp. 269–79. https://doi.org/10.1007/978-94-007-0890-7_19.

    Chapter  Google Scholar 

  6. Meena RS, Yadav RS, Meena H, et al. Towards the current need to enhance legume productivity and soil sustainability worldwide: a book review. J Clean Prod. 2015;104:513–5.

    Article  Google Scholar 

  7. Agricultural Biogas. https://www.clarke-energy.com/biogas/agricultural-biogas/. Accessed 2 Jan 2019.

  8. Bharathiraja B, Sudarshana T, Bharghavi A, et al. Biogas production—a review on composition, fuel properties, feedstock and principles of anaerobic digestion. Renew Sust Energ Rev. 2018;90:570–82.

    Article  CAS  Google Scholar 

  9. Popli KS. Biogas production, upgradation and slurry management. New Delhi: Narosa Publishing; 2012. pp. 109–13.

    Google Scholar 

  10. Baciocchi R, Carnevale E, Costa G, et al. Performance of a biogas upgrading process based on alkali absorption with regeneration using air pollution control residues. Waste Manage. 2013;12:2694–705.

    Article  CAS  Google Scholar 

  11. Basic Information on Biogas. https://web.archive.org/web/20100106022729/http://www.kolumbus.fi/suomen.biokaasukeskus/en/enperus.html. Accessed 6 Jan 2018.

  12. Itodo IN, Phillips TK. Determination of suitable material for anaerobic biogas digesters. In: Proceedings of the 2nd international conference and 23rd annual general meeting of the Nigerian Institution of Agricultural Engineers, vol 23; 2001, pp. 437–441.

  13. Qdais HAA, Hamoda MF, Newham J. Analysis of residential solid waste at generation sites. Waste Manage Res. 1997;15:395–406.

    Article  CAS  Google Scholar 

  14. Srivastava SK, Ramanathan AL. Geochemical assessment of groundwater quality in the vicinity of Bhalswa landfill, Delhi, India, using graphical and multivariate statistical methods. Environ Geol. 2008;53:1509–28.

    Article  CAS  Google Scholar 

  15. Ruth LA. Energy from MSW: a comparison with coal combustion technology. Prog Energ Combust Sci. 1998;24:545–64.

    Article  CAS  Google Scholar 

  16. Anukam A, Mohammadi A, Naqvi M, et al. A review of the chemistry of anaerobic digestion: methods of accelerating and optimizing process efficiency. Processes. 2019;7:504.

    Article  CAS  Google Scholar 

  17. Holand KT, Knapp JS, Shoesmith JG. Anaerobic bacteria (Tertiary level biology), Book, ISBN: 978-1-4612-8995-1 (Print) 978-1-4613-1775-3 (Online); 1987.

  18. Qasim SR. Wastewater treatment plants: planning. Design and operation. 2nd ed. Boca Raton: CRC; 1999.

    Google Scholar 

  19. Reynolds TD, Richards P. Unit operation and process in environmental engineering. 2nd ed. Boston: PWS Publishing Company; 1995.

    Google Scholar 

  20. IWA. Task group for mathematical modeling of anaerobic digestion processes. Anaerobic digestion model No. 1. London: IWA Publishing; 2002.

    Google Scholar 

  21. Ghyoot W, Verstraete W. Anaerobic digestion of primary sludge from chemical pre-precipitation. Water Sci Technol. 1997;6(7):357–65.

    Article  Google Scholar 

  22. Hobson PN, Bousfield S, Summers R. Methane production from agricultural and domestic wastes. London: Applied Science Publishers Ltd.; 1981. p. 269.

    Book  Google Scholar 

  23. Madu C, Sodeinde OA. The relevance of biomass in sustainable energy-development in Nigeria. In: Proceedings of the National Engineering Conference and annual general meeting of the Nigerian Society of Engineers; 2001. pp. 220–227.

  24. Boe K. Online monitoring and control of the biogas process. Ph.D. thesis, Institute of Environment and Resource, Technical University of Denmark; 2006.

  25. Turovskiy IS, Mathai PK. Wastewater sludge processing. New York: Wiley; 2006.

    Book  Google Scholar 

  26. Hwang MH, Jang NJ, Hyum SH, et al. Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH. J Biotechnol. 2004;111:297–309.

    Article  CAS  Google Scholar 

  27. Rehm HJ, Reed G, Puhler A, et al. Biotechnology vol 11A: environmental processes I. 2nd ed. New York: Wiley; 2000.

    Book  Google Scholar 

  28. Metcalf and Eddy. Wastewater engineering: treatment and reuse. 4th ed. New York: McGraw-Hill; 2003.

    Google Scholar 

  29. Srivastava SK. Assessment of groundwater quality for the suitability of irrigation and its impacts on crop yields in the Guna district, India. Agric Water Manage. 2019;216:224–41. https://doi.org/10.1016/j.agwat.2019.02.005.

    Article  Google Scholar 

  30. Bernard O, Hadj-Sadok Z, Dochain D, et al. Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnol Bioeng. 2001;75:424–38.

    Article  CAS  Google Scholar 

  31. Rincon A, Angulo F, Oliver G. Control of an AD through the normal form of fold bifurcation. J Process Control. 2009;19:1355–67.

    Article  CAS  Google Scholar 

  32. Pind PF, Angelidaki I, Ahring BK. Dynamics of the anaerobic process: effects of volatile fatty acids. Biotechnol Bioeng. 2003;82:791–801.

    Article  CAS  Google Scholar 

  33. Seok J. Hybrid adaptive optimal control of anaerobic fluidized bed bioreactor for the deicing waste treatment. J Biotechnol. 2003;102:165–75.

    Article  CAS  Google Scholar 

  34. Vavilin VA, Lokshina LV. Modeling of volatile fatty acid degradation kinetics and evaluation of microorganism activity. Bioresour Technol. 1996;57:69–80.

    Article  CAS  Google Scholar 

  35. Kayhanian M, Tchobanoglous G. Innovative two-stage process for the recovery of energy and compost from the organic fraction of MSW. Water Sci Technol. 1993;27(2):133–43.

    Article  CAS  Google Scholar 

  36. Kayhanian M, Tchobanoglous G, Brown RC. Biomass conservation and processes for energy recovery. Handbook of Energy Conservation and Renewable Energy, vol 25. Florida: Taylor and Francis Group LLC; 2007, p. 1–35.

    Google Scholar 

  37. Jewell WJ, Kang H, Herndon FG, et al. Engineering design consideration for methane fermentation of EC. Washington, DC: Gas Research Institute; 1987. pp. 105–6.

    Google Scholar 

  38. Richards KB, Cummings RJ, Jewell WJ, et al. High-solid anaerobic methane fermentation of sorghum and cellulose. Biomass Bioenergy. 1991;1(2):47–53.

    Article  CAS  Google Scholar 

  39. Vassiliou N. The biogas project in Cyprus. Proceedings of the Ist International Conference of Energy and Environ. Limassol, Cyprus 1997; pp. 757–761.

  40. Stinner PW, Deuker A, Schmalfu, et al. Perennial and intercrop legumes as energy crops for biogas production. Book Legum Soil Health Sustain Manag. 2018;5:139–71. https://doi.org/10.1007/978-981-13-0253-4_5.

    Article  Google Scholar 

  41. Stinner W. Dissertation, Chair of organic agriculture, Giessen University, (ed) Verlag Dr. Köster, Berlin; 2011.

  42. Keymer U. Biogas ausbeutenverschiedener Substrate. http://www.lfl.bayern.de/iba/energie/049711/2017. Accessed 4 Apr 2019.

  43. Moller K, Stinner W, Leithold G. Biogas in organic agriculture: effects on yields, nutrient uptake and environmental parameters of the cropping system. Presented at Joint Organic Congress, Odense, Denmark, 30–31 May 2006. http://orgprints.org/7223/. Accessed 4 July 2018.

  44. Moller K, Stinner W, Deuker A, et al. Effect of different manuring system with and without biogas digestion on nitrogen cycle and crop yield in mixed organic dairy farming system. Nutr Cycl Agroecosyst. 2008;82:209–32.

    Article  Google Scholar 

  45. FAO. Food and agricultural commodities production. http://www.fao.org/faostat/en/#home. Accessed 19 Mar 2019.

  46. Janke L. Optimization of anaerobic digestion of sugarcane waste for biogas production in Brazil. Dissertation, Department of Waste Management and Material Flow Rostock University; 2017.

  47. Janke L, Leite AF, Batista K, et al. Enhancing biogas production from vinasse in sugarcane biorefineries: effects of urea and trace elements supplementation on process performance and stability. Bioresour Technol. 2016;217:10–20. https://doi.org/10.1016/j.biortech.2016.01.110.

    Article  CAS  Google Scholar 

  48. Yadav GS, Lal R, Meena RS, et al. Conservation tillage and nutrient management effects on productivity and soil carbon sequestration under double cropping of rice in the northeastern region of India. Ecol Ind 2017. http://www.sciencedirect.com/science/article/pii/S1470160X173056175.

  49. Monteith JL. Reassessment of maximum growth rates for C3 and C4 crops. Exp Agric. 1978;14:1–5.

    Article  CAS  Google Scholar 

  50. Naidu SL, Long SP. Potential mechanisms of low-temperature tolerance of C4 photosynthesis in Miscanthus × giganteus: An in vivo analysis. Planta. 2004;220:145–55.

    Article  CAS  Google Scholar 

  51. Naidu SL, Moose SP, Al-Shoaibi AK, et al. Cold tolerance of C4 photosynthesis in Miscanthus × giganteus: adaptation in amounts and sequence of C4 photosynthetic enzymes. Plant Physiol. 2003;132:1688–97.

    Article  CAS  Google Scholar 

  52. Bennett AS, Anex RP. Production, transportation and milling costs of sweet sorghum as a feedstock for centralized bioethanol production in the upper Midwest. Bioresour Technol. 2009;100:1595–607.

    Article  CAS  Google Scholar 

  53. Buxton DR, Anderson IC, Hallam A. Performance of sweet and forage sorghum grown continuously, double-cropped with winter rye, or in rotation with soybean and maize. Agron J. 1999;91:93–101.

    Article  Google Scholar 

  54. Grassi G, Tondi G, Helm P. Small-sized commercial bioenergy technologies as an instrument of rural development. Biomass and agriculture: sustainability, markets and policies. Paris: OECD; 2004.

    Google Scholar 

  55. Hunter EL. Development, sugar yield, and ethanol potential of sweet sorghum, Master’s Thesis, Iowa State University; 1994.

  56. Hunter EL, Anderson IC. Sweet sorghum. Horticult Rev. 1997;21:73–104.

    Google Scholar 

  57. Miller FR, Mcbee GG. Genetics and management of physiological systems of sorghum for biomass production. Biomass Bioenerg. 1993;5:41–9.

    Article  Google Scholar 

  58. Rooney WL, Blumenthal J, Bean B, et al. Designing sorghum as a dedicated bioenergy feedstock. Biofuels Bioprod Biorefin (Biofpr). 2007;1:147–57.

    Article  CAS  Google Scholar 

  59. Luhnow D, Samor G. It wears off energy imports. Wall Street J. 2006;33:2694–705.

    Google Scholar 

  60. Comis, D. Switching to switchgrass makes sense. USDA-ARS 2006. http://www.ars.usda.gov/is/AR/archive/jul06/grass0706.htm?pf=1. Accessed 18 Oct 2018.

  61. Teoh K, Devaiah SP, Requesens DV, et al. Dedicated Herbaceous EC. Chapter 4. Plant Biomass Conversion. 1st ed. Oxford: Wiley; 2011. p. 85–108.

    Book  Google Scholar 

  62. Ndobeni A, Oyekola O, Welz PJ. Organic removal rates and biogas production of an upflow anaerobic sludge blanket reactor treating sugarcane molasses. S Afr J Chem Eng. 2019;28:1–7.

    Google Scholar 

  63. Anaerobic digestion 2020. https://en.wikipedia.org/wiki/Anaerobic_digestion. Accessed 18 Jan 2020.

  64. Parashar SK, Srivastava SK, Dutta NN, et al. Engineering aspects of immobilized lipases on esterification: a special emphasis of crowding, confinement and diffusion effects. Eng Life Sci. 2018;18:308–16.

    Article  CAS  Google Scholar 

  65. Parashar SK, Srivastava SK, Garlapati VK, et al. Production of microbial enzyme triacylglycerol Acylhydrolases by ASPERGILLUS SYDOWII JPG01 in submerged fermentation using agro-residues. Asian J Microbiol Biotechnol Environ Exp Sci. 2019;21(4):1076–9.

    Google Scholar 

  66. Jerger D, Tsao G. Feed composition in anaerobic digestion of biomass; 2006; p. 65.

  67. Richards KB, Cummings RJ, White ET, Jewel WJ. Methods for kinetic analysis of methane fermentation in high solids biomass digesters. Biomass Bioenergy. 1991;1(2):65–73.

    Article  CAS  Google Scholar 

  68. Barlindhaug J, Ødegaard H. Thermal hydrolysate as a carbon source for denitrification. Water Sci Technol. 1996;33:99–108.

    Article  CAS  Google Scholar 

  69. Li YY, Noike T. Upgrading of anaerobic digestion of waste activated sludge by thermal pre-treatment. Water Sci Technol. 1992;3(4):857–66.

    Article  Google Scholar 

  70. Hiraoka M, Takeda N, Sakai S, et al. Highly efficient anaerobic digestion with thermal pre-treatment. Water Sci Technol. 1989;17:54.

    Google Scholar 

  71. Ferrer I, Climent M, Baeza MM, et al. Effect of sludge pretreatment on thermophilic anaerobic digestion. In: Proceedings of the IWA specialized conference on sustainable sludge management: state-of-the-art, challenges and perspectives, Moscow, Russia, 29–31 May; 2006.

  72. Pinnekamp J. Effects of thermal pre-treatment of sewage sludge on anaerobic digestion. Water Sci Technol. 1989;21:97–108.

    Article  CAS  Google Scholar 

  73. Kim J, Park C, Kim T, et al. Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J Biosci Bioeng. 2003;95:271–5.

    Article  CAS  Google Scholar 

  74. Tanaka S, Kobayashi T, Kamiyama K, et al. Effects of thermochemical pre-treatment on the anaerobic digestion of waste activated sludge. Water Sci Technol. 1997;8:209–15.

    Article  Google Scholar 

  75. Zheng J, Graff RA, Fillos J, et al. Incorporation of rapid thermal conditioning into a wastewater treatment plant. Fuel Process Technol. 1998;56:183–200.

    Article  CAS  Google Scholar 

  76. Knezevic Z, Mavinic DS, Anderson BC. Pilot-scale evaluation of anaerobic co-digestion of primary and pretreated waste activated sludge. Water Environ Res. 1995;67:835–41.

    Article  CAS  Google Scholar 

  77. Tanaka S, Kamiyama K. Thermochemical pretreatment in the anaerobic digestion of waste activated sludge. Water Sci Technol. 2002;46:173–9.

    Article  CAS  Google Scholar 

  78. Rivard CJ, Nagle NJ. Pre-treatment technology for the beneficial reuse of municipal sewage sludge. Appl Bioch Biotechnol. 1996;57(58):983–91.

    Article  Google Scholar 

  79. Choi HB, Hwang KY, Shin EB. Effects on anaerobic digestion of waste activated sludge pre-treatment. Water Sci Technol. 1997;35:207–11.

    Article  CAS  Google Scholar 

  80. Baier U, Schmidheiny P. Enhance anaerobic degradation of mechanically disintegrated sludge. Water Sci Technol. 1997;37:137–43.

    Article  Google Scholar 

  81. Weemaes M, Grootaerd H, Simoens F, et al. Anaerobic digestion of ozonized biosolids. Water Resour. 2000;34:2330–6.

    CAS  Google Scholar 

  82. Battimelli A, Millet C, Delgenes JP, et al. Anaerobic digestion of waste activated sludge combined with ozone post-treatment and recycling. Water Sci Technol. 2003;48:61–8.

    Article  CAS  Google Scholar 

  83. Goel R, Tokutomi T, Yasui H. Anaerobic digestion of excess activated sludge with ozone pre-treatment. Water Sci Technol. 2003;47:207–14.

    Article  CAS  Google Scholar 

  84. Shimizu T, Kudo K, Nasu Y. Anaerobic waste activated sludge digestion-a bioconversion mechanism and kinetic model. Biotechnol Bioeng. 1993;41:1082–91.

    Article  CAS  Google Scholar 

  85. Wang Q, Kuninobu M, Kamimoto K, et al. Upgrading of anaerobic digestion of waste activated sludge by ultrasonic pre-treatment. Bioresour Technol. 1999;68:309–13.

    Article  CAS  Google Scholar 

  86. Neis U, Tiehm A, Nickel K. Enhancement of anaerobic sludge digestion by ultrasonic disintegration. Water Sci Technol. 2000;42:73–80.

    Article  CAS  Google Scholar 

  87. Mattocks R. Understanding biogas generation, Technical Paper No. 4. Volunteers in technical assistance, Virginia, USA, Energy Research Abstracts. Vol 11. Office of Scientific and Technical Information United States Department of Energy; 1984. p. 13.

  88. Vesilind PA, editor. Wastewater treatment plant design. 4th ed. London: IWA Publishing and the Water Environment Federation; 1998.

    Google Scholar 

  89. Speece RE. Anaerobic biotechnology for industrial wastewaters. 1st ed. Nashville: Archae; 1996.

    Google Scholar 

  90. Tchobanoglous G, Burton FL, Stensel HD. Waste-water engineering: treatment and reuse. 4th ed. New Delhi: Tata McGraw-Hill; 2003. p. 1819.

    Google Scholar 

  91. Kiely G. Environmental engineering. International ed. Boston: Irwin, McGraw-Hill; 1998. p. 979.

    Google Scholar 

  92. Song YC, Kwon SJ, Woo JH. Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic and thermophilic digestion of sewage sludge. Water Res. 2004;38(7):1653–62.

    Article  CAS  Google Scholar 

  93. Parashar SK, Srivastava SK, Garlapati VK. The mathematical modeling for the optimization of triacylglycerol acylhydrolases production through artificial neural network and genetic algorithm. Int J Pharma Bio Sci. 2019;10(3):135–43.

    CAS  Google Scholar 

  94. Song YC, Kwon SJ, Woo JH. Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic and thermophilic digestion of sewage sludge. Water Resour. 2004;38(7):1653–62.

    CAS  Google Scholar 

  95. Balat M, Balat H, Oz C. Progress in bioethanol processing. Prog Energy Combust Sci. 2008;34:551–73.

    Article  CAS  Google Scholar 

  96. Jewell W, Cummings R, Richards B. Methane fermentation of EC: maximum conversion kinetics and in situ biogas purification. Biomass Bioenerg. 1993;5(3–4):261–78. https://doi.org/10.1016/0961-9534(93)90076-G.

    Article  CAS  Google Scholar 

  97. Richards B, Cummings R, White T, et al. Methods for kinetic analysis of methane fermentation in high solids biomass digesters. Biomass and Bioenergy. 1991;1(2):65–73. https://doi.org/10.1016/0961-9534(91)90028-b.

    Article  CAS  Google Scholar 

  98. Scheper T. Advances in Biochemical Engineering and Biotechnology, Book Series Editor. Berlin, Heidelberg: Springer; 2003 vol. 81. ISSN 07246145

    Google Scholar 

  99. Griffin ME, McMahon KD, Mackie RI, et al. Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids. Biotechnol Bioeng. 1998;57:342–55.

    Article  CAS  Google Scholar 

  100. Anaerobic digestion. 2020. https://www.chemeurope.com/en/encyclopedia/Anaerobic_digestion.html. Accessed 17 Jan 2020.

  101. Meyer-Jens T, Matz G, Märkl H. Online measurement of dissolved and gaseous H2S in anaerobic biogas reactors. Appl Microbiol Biotechnol. 1995;43(2):341–5.

    Article  CAS  Google Scholar 

  102. Wheles E, Pierece E. Siloxanes in landfill and digester gas. In: 27th annual SWANA LFG symposium; 2004. p. 1–10. https://www.scsengineers.com/wp-content/uploads/2016/08/2004-Siloxanes-Update-Paper.pdf.

  103. Tower P, Wetzel J, Lombard X. New landfill gas treatment technology dramatically lowers energy production costs. Applied filter technology; 2006. www.appliedfiltertechnology.com. Accessed 7 Oct 2018.

  104. Richards B, Herndon FG, Jewell WJ, et al. In situ CH4 enrichment in methanogenic energy crop digesters. Biomass Bioenerg. 1994;6(4):275–82.

    Article  CAS  Google Scholar 

  105. Leung DYC, Caramanna G, Mercedes M-VM. An overview of the current status of carbon dioxide and storage technologies. Renew Sust Energ Rev. 2014;39:423–43.

    Article  CAS  Google Scholar 

  106. Hendriks C. Energy conversion: CO2 removal from coal-fired power plant. Netherlands: Kluwer Academic; 1995.

    Google Scholar 

  107. Veawab A, Aroonwilas A, Tontiwachwuthiku P. CO2 absorption performance of aqueous alkanolamine in packed column. Fuel Chem Div. P Report. 2002;47:49–50.

  108. Aaron D, Tsouris C. Separation of CO2 from flue gas: a review. Sep Sci Technol. 2005;40:321–48.

    Article  CAS  Google Scholar 

  109. Bhown AS, Freeman BC. Analysis and status of post-combustion carbon dioxide capture technologies. Environ Sci Technol. 2011;45:8624–32.

    Article  CAS  Google Scholar 

  110. Da Siva CF, Dia APB, Santana APR, et al. Intercalation of the amine into layered calcium phosphate and their new behavior for copper retention from ethanolic solution. Open J Synth Theory Appl. 2013;2:1–7.

    Google Scholar 

  111. Takamura Y, Narita S, Aoki J, et al. Application of high-PSA process for improvement of CO2 recovery system. Can J Chem Eng. 2001;79:812–6.

    Article  CAS  Google Scholar 

  112. Clausse M, Merel J, Meunier F. Numerical parametric study on CO2 capture by indirect thermal swing adsorption. Int J Green Gas Control. 2011;5:1206–13.

    Article  CAS  Google Scholar 

  113. Ritter JA. Radically new adsorption cycle for carbon dioxide sequestration. University coal research contractors review meeting. U.S. DOE. National Energy Technology Laboratory. Pittsburgh, Pennsylvania; 2004.

  114. Rackley SA. Carbon capture and storage. Burlington: Butterworth Heinemann, Elsevier; 2010.

    Book  Google Scholar 

  115. Gielen D. Energy policy consequences of future CO2 capture and sequestration technologies. In: Proceedings of the 2nd annual conference on carbon sequestration. Alexandria, VA, 5–8; 2003.

  116. Andus H. Leading options for the capture of CO2 at power stations. In: Proceedings of the 5th international conference on greenhouse gas control technology. Cairns, Australia 13–16; 2000.

  117. Gottlicher G, Pruschek R. Comparison of CO2 removal systems for fossil-fueled power plants. Energy Convers Manag. 1997;38:S173–8.

    Article  Google Scholar 

  118. Tuinier MJ, Annaland MVS, Kramer GJ, et al. Cryogenic CO2 capture using dynamically operated packed beds. Chem Eng Sci. 2010;65:114–9.

    Article  CAS  Google Scholar 

  119. Ott J, Gronemann V, Pontzen F, et al. Ullmann’s encyclopedia of industrial chemistry. Germany: Wiley-VCH, Methanol Chapter; 2012.

    Google Scholar 

  120. Perez-Fortes M, Schoneberger JC, Boulamanti A, et al. Methanol synthesis using captured CO2 as raw material: techno-economic and environmental assessment. Appl Energy. 2016;161:718–32. https://doi.org/10.1016/j.apenergy.2015.07.067.

    Article  CAS  Google Scholar 

  121. Fischer F, Tropsch H. Process for the production of paraffin-hydrocarbons with more than one carbon atom. Official Gazette of the United States Patent Office, vol 391; 1930. p. 1746464.

  122. Wei J, Ge Q, Yao R, et al. Directly converting CO2 into a gasoline fuel. Nat Commun. 2017;8:15174. https://doi.org/10.1038/ncomms15174.

    Article  Google Scholar 

  123. Toyir J, Miloua R, Elkadri NE, et al. Sustainable process for the production of methanol from CO2 and H2 using Cu/ZnO-based multicomponent catalyst. Proceeding of the JMSM 2008 Conference. Phys Procedia 2009; 2. pp. 1075–1079. https://doi.org/10.1016/j.phpro.2009.11.065.

  124. Gao P, Li S, Bu Xi, et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat Chem. 2017;9:1019–1024. https://doi.org/10.1038/nchem2794.

  125. Su J, Wang D, Wang Y, et al. Direct conversion of syngas to light olefins over Zr–In2O3 and SAPO-34 bifunctional catalysts: design of oxide component and construction of reaction network. Chem Cat Chem. 2018. https://doi.org/10.1002/cctc201702054.

    Article  Google Scholar 

  126. Detweiler ZM, White JL, Bernasek SL, et al. Anodized indium metal electrodes for enhanced carbon dioxide reduction in aqueous electrolyte. Langmuir. 2014;30(25):7593–600. https://doi.org/10.1021/la501245p.

    Article  CAS  Google Scholar 

  127. Hoch LB, Wood TE, O’Brien PG, et al. The rational design of a single-component photocatalyst for gas-phase CO2 reduction using both UV and visible light. Adv Sci. 2014;1(1):1400013.

    Article  CAS  Google Scholar 

  128. Iwasa N, Mayanagi T, Ogawa N, et al. New catalytic functions of Pd–Zn, Pd–Ga, Pd–In, Pt–Zn, Pt–Ga and Pt–In alloys in the conversions of methanol. Catal Lett. 1998;54(3):119–23.

    Article  CAS  Google Scholar 

  129. Yue Z, Teater C, Liu Y, et al. A sustainable pathway of cellulosic ethanol production integrating anaerobic digestion with biorefining. Biotechnol Bioeng. 2010;105(6):1031–9.

    CAS  Google Scholar 

  130. Srivastava SK, Ramanathan AL. Geochemical assessment of fluoride enrichment and nitrate contamination in groundwater in hard rock aquifer by using graphical and statistical methods. J Earth Syst Sci. 2018;127(7):104.

    Article  CAS  Google Scholar 

  131. Chen Y, Cheng JJ, Creamer KS. Inhibition of anaerobic digestion processes: a review. Bioresour Technol. 2008;99:4044–6.

    Article  CAS  Google Scholar 

  132. Al Seadi T, Rutz D, Prassl H, et al. More about anaerobic digestion. Esbjerg: University of Southern Denmark; 2018. p. 16–28.

    Google Scholar 

  133. Ranjan R, Srivastava SK, Ramanathan AL. An assessment of hydrogeochemistry of two wetlands located in Bihar State in subtropical climatic zone of India. Environ Earth Sci. 2017;76(1):1–19.

    Article  CAS  Google Scholar 

  134. Igoni AH, Ayotamuno MJ, Eze CL, et al. Design of AD for producing biogas from MSW. Appl Energy. 2008;85:430–8.

    Article  CAS  Google Scholar 

  135. Tchobanoglous G, Burton FL. Waste-water engineering: treatment disposal and reuse. 3rd ed. New York: McGraw-Hill; 1991. p. 1334.

    Google Scholar 

  136. Steadman P. Energy, environment, and building: a report to the Academy of Natural Sciences of Philadelphia. Cambridge: Cambridge University Press; 1975. p. 287.

    Google Scholar 

  137. Oregon State Department of Energy. Biomass Energy Technology. 2002. http://www.oregondoe.org/. Accessed 19 Aug 2018.

  138. Deutsche Maiskomitee e.V. (DMK). 2012. http://www.maiskomitee.de/web/intranet/news.aspx?news=b49dbc47-b873-4e2d-9856-8305e7c8624c. Accessed 22 Jan 2019.

  139. Deutsche Maiskomitee e.V. (DMK). 2012. http://www.maiskomitee.de/web/public/Fakten.aspx/Statistik/Deutschland/Fl%C3%A4chenertr%C3%A4ge. Accessed 22 Jan 2019.

  140. Thran D, Pfeiffer D. Bruckenschlag nach Osteuropa-Biomassepotenziale und -nutzungsoptionen in Russland, WeiBrussland und der Ukraine. Schriftenreihe des BMU-Forderprogramms “Energetische Biomassenutzung”, vol 6. 2012. http://www.biogasundenergiede/downloads/scholwin_publication_4.pdf. Accessed 27 Feb 2019.

  141. Climent M, Ferrer I, Baeza MD, et al. Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions. Chem Eng J. 2007;133:335–42.

    Article  CAS  Google Scholar 

  142. Bougrier C, Degenes JP, Carrere H. Impacts of thermal pre-treatments on the semi-continuous anaerobic digestion of waste activated sludge. Biochem Eng J. 2007;34:20–7.

    Article  CAS  Google Scholar 

  143. Valo A, Carrere H, Delgene J. Thermal, chemical and thermo-chemical pretreatment of waste activated sludge for anaerobic digestion. J Chem Technol Biotechnol. 2004;79:1197–203.

    Article  CAS  Google Scholar 

  144. Inagaki N, Suzuki S, Takemura K, et al. Enhancement of anaerobic sludge digestion by thermal alkaline pre-treatment. In: Proceeding of the eight international conferences of anaerobic digestion, Sendai, Japan, 25–29 May; 1997.

  145. Carballa M, Omil F, Lema JM. Improvement of anaerobic digestion operation and digested sludge characteristics using chemical and thermal pre-treatment. In: 10th world congress of anaerobic digestion, Montreal Canada, 23rd Aug–2nd sept; 2004.

  146. Kopp J, Muller J, Dichtl N, et al. Anaerobic digestion and dewatering characteristics of mechanically disintegrated excess sludge. Water Sci Technol. 1997;36:129–36.

    Article  CAS  Google Scholar 

  147. Nah IW, Kang YW, Hwang KY, et al. Mechanical pre-treatment of waste activated sludge for the anaerobic digestion process. Water Resour. 2000;34:2362–8.

    CAS  Google Scholar 

  148. Stinner W, Rensberg N. http://forumue.de/wp-content/uploads/2015/04/DBFZ_Maisalternativen.pdf. 2011. Accessed 21 Apr 2017.

  149. Verma JP, Jaiswal DK, Meena VS, et al. Current need for organic farming for enhancing sustainable agriculture. J Clean Prod. 2015;102:545–7.

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks the JUET administrative and academic staff for providing valuable support and facility to extend this review and research work in reality. Thanks to all.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, S.K. Advancement in biogas production from the solid waste by optimizing the anaerobic digestion. Waste Dispos. Sustain. Energy 2, 85–103 (2020). https://doi.org/10.1007/s42768-020-00036-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42768-020-00036-x

Keywords

Navigation