Skip to main content

Advertisement

Log in

Estimation of Semiarid Forest Canopy Cover Using Optimal Field Sampling and Satellite Data with Machine Learning Algorithms

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Forest canopy cover represents different characteristics of forest stands. However, especially in semiarid forest, the estimation of canopy cover by field measurements is too expensive. Therefore, it is necessary to develop appropriate techniques to estimate forest canopy cover for forest management in semiarid areas. In this research, a robust procedure to estimate canopy cover using stratification field sampling and AdaBoostM1 machine learning algorithm with Landsat 8 OLI imagery is suggested. Approximately 29,000 ha of semiarid forest (Manesht- and Ghelarang-protected area) in west of Iran was selected as the study area. The unsupervised classification was used on NDVI layer extracted from OLI data, and Neyman method was applied for allocation, in stratified areas. The crown cover was measured in percentage in each plot. In inaccessible plots, the optical satellite imagery of Worldview-2 from Google Earth database was used (0.46 m spatial resolution). For the classification of canopy cover, the AdaBoostM1 algorithm with random forest classifier was trained by 75% split original data, while 25% remaining data were used for accuracy assessment using ROC curve, true positive (TP), false positive (FP), overall accuracy (OA) and kappa coefficient (K). The results showed the overall accuracy and kappa coefficient of 91% and 0.88, respectively. Based on the results, the methodology developed in this study is suitable to estimate canopy cover in semiarid forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed, O. S., Franklin, S. E., Wulder, M. A., & White, J. C. (2015). Characterizing stand-level forest canopy cover and height using landsat time series, samples of airborne LiDAR, and the random forest algorithm. ISPRS Journal of Photogrammetry and Remote Sensing,101, 89–101.

    Article  Google Scholar 

  • Borges, F. A., Fernandes, R. A., Lucas, A., & Silva, I. N. (2015). Comparison between random forest algorithm and J48 decision trees applied to the classification of power quality disturbances. In Proceedings of the international conference on data mining (DMIN) (pp. 146). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp).

  • Carreiras, J. M., Pereira, J. M., & Pereira, J. S. (2006). Estimation of tree canopy cover in evergreen oak woodlands using remote sensing. Forest Ecology and Management,223(1), 45–53.

    Article  Google Scholar 

  • Cochran, W. G. (2007). Sampling techniques. New York: Wiley.

    Google Scholar 

  • Congalton, R. G., & Green, K. (2008). Assessing the accuracy of remotely sensed data: Principles and practices. Boca Raton: CRC Press.

    Book  Google Scholar 

  • DeFries, R., Hansen, M., Steininger, M., Dubayah, R., Sohlberg, R., & Townshend, J. (1997). Subpixel forest cover in central Africa from multisensor, multitemporal data. Remote Sensing of Environment,60(3), 228–246.

    Article  Google Scholar 

  • Freeman, E. A., Moisen, G. G., Coulston, J. W., & Wilson, B. T. (2015). Random forests and stochastic gradient boosting for predicting tree canopy cover: Comparing tuning processes and model performance 1. Canadian Journal of Forest Research,45(999), 1–17.

    Google Scholar 

  • Freund, Y., Schapire, R., & Abe, N. (1999). A short introduction to boosting. Journal-Japanese Society For Artificial Intelligence,14(771–780), 1612.

    Google Scholar 

  • García-Gutiérrez, J., Martínez-Álvarez, F., Troncoso, A., & Riquelme, J. (2015). A comparison of machine learning regression techniques for LiDAR-derived estimation of forest variables. Neurocomputing,167, 24–31.

    Article  Google Scholar 

  • Gemmell, F. (1999). Estimating conifer forest cover with Thematic Mapper data using reflectance model inversion and two spectral indices in a site with variable background characteristics. Remote Sensing of Environment,69(2), 105–121.

    Article  Google Scholar 

  • Huang, C., & Townshend, J. (2003). A stepwise regression tree for nonlinear approximation: Applications to estimating subpixel land cover. International Journal of Remote Sensing,24(1), 75–90.

    Article  Google Scholar 

  • Hyde, P., Dubayah, R., Walker, W., Blair, J. B., Hofton, M., & Hunsaker, C. (2006). Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM + , Quickbird) synergy. Remote Sensing of Environment,102(1), 63–73.

    Article  Google Scholar 

  • Jackson, R. D., & Huete, A. R. (1991). Interpreting vegetation indices. Preventive Veterinary Medicine,11(3), 185–200.

    Article  Google Scholar 

  • Jennings, S., Brown, N., & Sheil, D. (1999). Assessing forest canopies and understory illumination: Canopy closure, canopy cover and other measures. Forestry,72(1), 59–74.

    Article  Google Scholar 

  • Kalliovirta, J., & Tokola, T. (2005). Functions for estimating stem diameter and tree age using tree height, crown width and existing stand database information. Silva Fennica,39(2), 227–248.

    Article  Google Scholar 

  • Köhl, M., Magnussen, S. S., & Marchetti, M. (2006). Sampling methods, remote sensing and GIS multiresource forest inventory (p. 367). New York: Springer. ISBN 3-540-32571-9.

    Book  Google Scholar 

  • Korhonen, L., Korhonen, K. T., Rautiainen, M., & Stenberg, P. (2006). Estimation of forest canopy cover: A comparison of field measurement techniques. Silva Fennica,40(4), 577.

    Article  Google Scholar 

  • Lan, H., Frank, E., & Hall, M. (2011). Data mining: Practical machine learning tools and techniques (3rd ed., p. 561). Boston: Morgan Kaufman.

    Google Scholar 

  • Lowman, M. D., & Rinker, H. B. (2004). Forest canopies (2nd ed.). Edinburgh: Academic Press.

    Google Scholar 

  • Maltamo, M., Eerikäinen, K., Pitkänen, J., Hyyppä, J., & Vehmas, M. (2004). Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions. Remote Sensing of Environment,90(3), 319–330.

    Article  Google Scholar 

  • Maltamo, M., Malinen, J., Packalén, P., Suvanto, A., & Kangas, J. (2006). Nonparametric estimation of stem volume using airborne laser scanning, aerial photography, and stand-register data. Canadian Journal of Forest Research,36(2), 426–436.

    Article  Google Scholar 

  • Margineantu, D. D., & Dietterich, T. G. (1997). Pruning adaptive boosting. In ICML (Vol. 97, pp. 211–218). Citeseer.

  • McCoy, R. M. (2005). Field methods in remote sensing (p. 159). New York: Guilford Press. ISBN 1-593-85079-4.

    Google Scholar 

  • Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being (Vol. 5). Washington, DC: Island Press.

    Google Scholar 

  • Pesta, F., Bhatta, S., Helder, D., & Mishra, N. (2014). Radiometric non-uniformity characterization and correction of Landsat 8 OLI using earth imagery-based techniques. Remote Sensing,7(1), 430–446.

    Article  Google Scholar 

  • Pu, R., Xu, B., & Gong, P. (2003). Oakwood crown closure estimation by unmixing Landsat TM data. International Journal of Remote Sensing,24(22), 4422–4445.

    Article  Google Scholar 

  • Ricotta, C., Avena, G., & Olsen, E. (1998). Geographic windows in the fractal analysis of local landscape complexity. Abstracta Botanica,3, 143–147.

    Google Scholar 

  • Rokach, L. (2010). Ensemble-based classifiers. Artificial Intelligence Review,33(1–2), 1–39.

    Article  Google Scholar 

  • Shataee, S., Kalbi, S., Fallah, A., & Pelz, D. (2012). Forest attribute imputation using machine-learning methods and ASTER data: Comparison of k-NN, SVR and random forest regression algorithms. International Journal of Remote Sensing,33(19), 6254–6280.

    Article  Google Scholar 

  • Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment,81(2), 337–354.

    Article  Google Scholar 

  • Stojanova, D., Panov, P., Gjorgjioski, V., Kobler, A., & Džeroski, S. (2010). Estimating vegetation height and canopy cover from remotely sensed data with machine learning. Ecological Informatics,5(4), 256–266.

    Article  Google Scholar 

  • Thanh Noi, P., & Kappas, M. (2018). Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery. Sensors, 18(1), 1–20.

    Article  Google Scholar 

  • Wang, R. (2012). AdaBoost for feature selection, classification and its relation with SVM, a review. Physics Procedia,25, 800–807.

    Article  Google Scholar 

  • Wu, W. (2011). Derivation of tree canopy cover by multiscale remote sensing approach. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,3825, 142–149.

    Google Scholar 

  • Wu, Q., & Sun, L. (2008). Sampling methods using remote sensing and global positioning system for crop acreage estimation at-national scale in China. Chinese Academy of Agricultural Engineering Research and Planning,41, 1337–1342.

    Google Scholar 

  • Ying, C., Qi-Guang, M., Jia-Chen, L., & Lin, G. (2013). Advance and prospects of AdaBoost algorithm. Acta Automatica Sinica,39(6), 745–758.

    Article  Google Scholar 

  • Zhao, K., Popescu, S., Meng, X., Pang, Y., & Agca, M. (2011). Characterizing forest canopy structure with lidar composite metrics and machine learning. Remote Sensing of Environment,115(8), 1978–1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mahdavi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdavi, A., Aziz, J. Estimation of Semiarid Forest Canopy Cover Using Optimal Field Sampling and Satellite Data with Machine Learning Algorithms. J Indian Soc Remote Sens 48, 575–583 (2020). https://doi.org/10.1007/s12524-020-01102-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-020-01102-x

Keywords

Navigation