Skip to main content
Log in

Analysis of Surface Reflectance Retrieval Over Four Typical Surfaces Via Gaofen-1 Satellite WFV4 Imagery

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

As a basis for the quantitative application of satellite remote sensing, surface reflectance can be retrieved through atmospheric correction methods. Currently, most studies have focused on developing or comparing atmospheric correction methods. However, few studies have quantitatively analyzed the effects of input parameters in an atmospheric correction method on retrieved surface reflectance. In this study, we evaluated the effects of the calibration coefficient, aerosol optical depth (AOD), aerosol type, and satellite zenith angle over four typical surfaces using wide field-of-view sensor four data of the Gao Fen-1 satellite. The results showed that (1) the relative errors of shrub, corn, grass, and soil reflectance increased as the calibration coefficient error increased; (2) the calibration coefficient, AOD, aerosol type, and satellite zenith angle affected corn reflectance retrieval the most, whereas they had the smallest effect on soil reflectance retrieval; and (3) the accuracy of the satellite zenith angle on the retrieved surface reflectance was the least pronounced, whereas the accuracy of aerosol type was the most pronounced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bai, Z. (2014). The design and characteristics of GF-1 satellite. Space International,3, 12–19.

    Google Scholar 

  • Baugh, W. M., & Groeneveld, D. P. (2008). Empirical proof of the empirical line. International Journal of Remote Sensing,29(3), 665–672.

    Article  Google Scholar 

  • Berk, A. (1999). MODTRAN4 user’s manual. Burlington, MA: Spectral Sciences Inc.

    Google Scholar 

  • Chavez, P. S. (1996). Image-based atmospheric corrections-revisited and improved. Photogrammetric Engineering and Remote Sensing,62(9), 1025–1036.

    Google Scholar 

  • Cheng, T., et al. (2009). Effect of surface reflectances on the space-based vector radiative detection. Acta Physica Sinica, 58(10), 7368–7375.

    Google Scholar 

  • Chrysoulakis, N., et al. (2010). Comparison of atmospheric correction methods using ASTER data for the area of Crete, Greece. International Journal of Remote Sensing, 31(24), 6347–6385.

    Article  Google Scholar 

  • Clark, B., et al. (2010). A comparison of methods for the retrieval of surface reflectance factor from multitemporal SPOT HRV, HRVIR, and HRG multispectral satellite imagery. Canadian Journal of Remote Sensing, 36(4), 397–411.

    Article  Google Scholar 

  • Evans, K. F., & Stephens, G. L. (1991). A new polarized atmospheric radiative transfer model. Journal of Quantitative Spectroscopy & Radiative Transfer,46, 413–423.

    Article  Google Scholar 

  • Gao, H., et al. (2016). Cross-calibration of GF-1 PMS sensor with Landsat 8 OLI and Terra MODIS. IEEE Transactions on Geoscience and Remote Sensing, 54(8), 4847–4854.

    Article  Google Scholar 

  • Gu, X., & Tong, X. (2015). Overview of China earth observation satellite programs (space agencies). IEEE Geoscience & Remote Sensing Magazine,3, 113–129.

    Article  Google Scholar 

  • Guo, H., et al. (2014). Evaluation of four dark object atmospheric correction methods based on ZY-3 CCD data. Spectroscopy and Spectral Analysis, 34(8), 2203–2220.

    Google Scholar 

  • Lee, K. H., & Kim, Y. J. (2010). Satellite remote sensing of Asian aerosols: A case study of clean, polluted, and Asian dust storm days. Atmospheric Measurement Techniques,3, 1771–1784.

    Article  Google Scholar 

  • Levy, R. C., et al. (2010). Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmospheric Chemistry and Physics, 10, 10399–10420.

    Article  Google Scholar 

  • Levy, R. C., et al. (2013). The collection 6 MODIS aerosol products over land and ocean. Atmospheric Chemistry and Physics, 6, 2989–3034.

    Google Scholar 

  • Li, S. S., et al. (2011). Retrieval and validation of the surface reflectance using HJ-1-CCD data. Spectroscopy and Spectral Analysis, 31(2), 516–520.

    Google Scholar 

  • Li, J., et al. (2016). Radiometric cross calibration of gaofen-1 wfv cameras using landsat-8 oli images: A simple image-based method. Remote Sensing, 8(5), 411.

    Article  Google Scholar 

  • Liang, S. (2000). Narrowband to broadband conversions of land surface albedo I: Algorithms. Remote Sensing of Environment,76, 213–238.

    Article  Google Scholar 

  • Mahiny, A. S., & Turner, B. J. (2007). A comparison of four common atmospheric correction methods. Photogrammetric Engineering and Remote Sensing,73(4), 361–368.

    Article  Google Scholar 

  • Martin, C., et al. (2015). Evaluation of medium spatial resolution BRDF-adjustment techniques using multi-angular SPOT4 (Take5) acquisitions. Remote Sensing, 7, 12057–12075.

    Article  Google Scholar 

  • Qin, Y., et al. (2015). Characterizing the aerosol and surface reflectance over Australia using AATSR. IEEE Transactions on Geoscience and Remote Sensing, 53(11), 6163–6182.

    Article  Google Scholar 

  • Román, M., et al. (2011). Variability in surface BRDF at different spatial scales (30 m–500 m) over a mixed agricultural landscape as retrieved from airborne and satellite spectral measurements. Remote Sensing of Environment, 115, 2184–2203.

    Article  Google Scholar 

  • Shao, Z., et al. (2018). Performance evaluation of single-label and multi-label remote sensing image retrieval using a dense labeling dataset. Remote Sensing, 10(6), 964.

    Article  Google Scholar 

  • Tian, Q., et al. (1998). Image-based atmospheric radiation correction and reflectance retrieval methods. Quarterly Journal of Applied Meteorology, 9(4), 456–461.

    Google Scholar 

  • Tyagi, P., & Bhosle, D. (2011). Atmospheric correction of remotely sensed images in spatial and transform domain. International Journal of Image Processing,5(5), 564–579.

    Google Scholar 

  • Vaudour, E., et al. (2008). Spatial retrieval of soil reflectance from SPOT multispectral data using the empirical line method. International Journal of Remote Sensing, 29(19), 5571–5584.

    Article  Google Scholar 

  • Vermote, E. F., et al. (1997). Second simulation of the satellite signal in the solar spectrum: An overview. IEEE Transactions on Geoscience and Remote Sensing, 35(3), 675–686.

    Article  Google Scholar 

  • Vermote, E. F., & Kotchenova, S. (2008). Atmospheric correction for the monitoring of land surfaces. Journal Geophysical Research,113, D23S90.

    Article  Google Scholar 

  • Vermote, E. F., & Vermeulen, A. (1999). Atmospheric correction algorithm: Spectral reflectance (Mod09). National Aeronautics and Space Administration. Available online: http://modis.gsfc.nasa.gov/data/atbd/atbd_mod08.pdf.

  • Wang, Z. T., et al. (2015). Retrieval of AOD from GF-1 16 m camera via DDV algorithm. Journal of Remote Sensing, 19(3), 530–538.

    Google Scholar 

  • Wang, Z. T., et al. (2016). Quickly atmospheric correction for GF-1 WFV cameras. Journal of Remote Sensing, 20(3), 353–360.

    Google Scholar 

  • Yang, A., et al. (2015). Cross-calibration of GF-1/WFV over a desert site using Landsat 8/OLI imagery and zy-3/tlc data. Remote Sensing, 7(8), 10763–10787.

    Article  Google Scholar 

  • Zhang, Z., et al. (2019a). Deep learning based retrieval of forest aboveground biomass from combined LiDAR and landsat 8 Data. Remote Sensing, 11(12), 1459.

    Article  Google Scholar 

  • Zhang, Z., et al. (2019b). Improved deep hashing with soft pairwise similarity for multi-label image retrieval. IEEE Transactions on Multimedia, 2019(99), 1–14. https://doi.org/10.1109/TMM.2019.2929957.

    Article  Google Scholar 

  • Zou, Q., et al. (2015). Deep Learning Based Feature Selection for Remote Sensing Scene Classification. IEEE Geoscience and Remote Sensing Letters, 12(11), 2321–2325. https://doi.org/10.1109/LGRS.2015.2475299.

    Article  Google Scholar 

  • Zou, Q., et al. (2019). DeepCrack: learning hierarchical convolutional features for crack detection. IEEE Transactions on Image Processing, 28(3), 1498–1512.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key R&D Program of China (Grant No. 2017YFB0502800), Beijing Natural Science Foundation (Grant Number: 8184087), and the open Fund of State Key Laboratory of Remote Sensing Science (Grant No. OFSLRSS201715). The authors would like to thank CCRSDA for providing GF-1 satellite WFV4 imagery and NASA for providing MOD09 product.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The Characteristics of GF-1 Satellite WFV4 Camera

See Table 4.

Table 4 The characteristics of GF-1 satellite WFV4 camera

Appendix B: The Geographic Locations of Surfaces

See Table 5.

Table 5 The geographic locations of four surfaces

Appendix C: The Effects of Sun Zenith Angle Accuracy on Surface Reflectance Retrieval

See Fig. 8.

Fig. 8
figure 8

The effects of sun zenith angle accuracy on the retrieved surface reflectance

Appendix D: The Effects of Azimuth Angle Accuracy on Surface Reflectance Retrieval

See Fig. 9.

Fig. 9
figure 9

The effects of azimuth angle accuracy on the retrieved surface reflectance

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Gu, X., Bao, F. et al. Analysis of Surface Reflectance Retrieval Over Four Typical Surfaces Via Gaofen-1 Satellite WFV4 Imagery. J Indian Soc Remote Sens 48, 709–720 (2020). https://doi.org/10.1007/s12524-019-01068-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-019-01068-5

Keywords

Navigation