Skip to main content
Log in

Substantiation of Réunion plume induced prolonged magmatic pulses (ca. 70.5–65.5 Ma) of the Deccan LIP in the Chhotanagpur Gneissic Complex, eastern India: Constraints from 40Ar/39Ar geochronology

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

This study presents 40Ar/39Ar geochronology on the mafic dykes emplaced in the Damodar valley Gondwana sedimentary basins of the Chhotanagpur Gneissic Complex (CGC) to authenticate prolonged mafic magmatic activities during Maastrichtian period. A couple of earlier and one new 40Ar/39Ar plateau ages, which range in age from ca. 70.5 to 65.5 Ma, suggest prolonged (~5 myr) magmatic activities in the CGC. These syn- and pre-Deccan LIP magmatic intrusive activities in the CGC are supposedly related to the Réunion mantle plume. The reported age of 70.5 ± 0.9 Ma of a NE-trending mafic dyke emplaced within the Raniganj basin could probably be the earliest record of the Réunion mantle plume activity in the Indian shield. A number of other early magmatic rocks, related to the Réunion mantle plume induced Deccan LIP event, are also recorded elsewhere in the Indian shield and supportive of prolonged magmatic activities. Finally, this study also provides a better constraint on the initiation and lateral extent of the Réunion mantle plume induced Deccan LIP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

References

  • Acharyya S K 2003 The nature of Mesoproterozoic central Indian Tectonic zone with exhumed and reworked older granulites; Gondwana Res. 6 197–214.

    Google Scholar 

  • Allègre C J, Birck J L, Capmas F and Courtillot V 1999 Age of the Deccan traps using 187Re–187Os systematic; Earth Planet. Sci. Lett. 170 197–204.

    Google Scholar 

  • Baksi A K 1994 Intracanyon flows in the Deccan province, India? Case history of the Rajahmundry Traps; Geology 22 605–608.

    Google Scholar 

  • Basu A R, Renne P R, Dasgupta D K, Teichman F and Poreda R J 1993 Early and late igneous pluses and a high-3He plume origin for the Deccan flood basalts; Science 261 902–906.

    Google Scholar 

  • Beane J E, Turner C A, Hooper P R, Subbarao K V and Walsh J N 1986 Stratigraphy, composition, and the form of the Deccan basalts, Western Ghats, India; Bull. Volcanol. 47 61–83.

    Google Scholar 

  • Bhattacharji S, Chatterjee N, Wampler J M, Nayak P N and Deshmukh S S 1996 Indian intraplate and continental margin rifting, lithospheric extension, and mantle upwelling in Deccan flood basalt volcanism near the K/T boundary: Evidence from mafic dyke swarms; J. Geol. 104 379–398.

    Google Scholar 

  • Bhowmik S K, Wilde S A, Bhandari A, Pal T and Pant N C 2012 Growth of the Greater Indian Landmass and its assembly in Rodinia: Geochronological evidence from the Central Indian Tectonic Zone; Gondwana Res. 22 54–72.

    Google Scholar 

  • Bryan S E and Ernst R E 2008 Revised definition of Large Igneous Provinces (LIPs); Earth Sci. Rev. 86 175–202.

    Google Scholar 

  • Bryan S E, Ukstins Peate I A, Self S, Peate D, Jerram D A, Mawby M R, Miller J and Marsh J S 2010 The largest volcanic eruptions on Earth; Earth Sci. Rev. 102 207–229.

    Google Scholar 

  • Chakraborty C, Mandal N and Ghosh S K 2003 Kinematics of the Gondwana basins of peninsular India; Tectonophys. 377 299–324.

    Google Scholar 

  • Chalapathi Rao N V and Lehmann B 2011 Kimberlites, flood basalts and mantle plumes: New insights from the Deccan Large Igneous Province; Earth Sci. Rev. 107 315–324.

    Google Scholar 

  • Chalapathi Rao N V, Srivastava R K, Sinha A K and Ravikant V 2014 Petrogenesis of Kerguelen mantle plume-linked Early Cretaceous ultrapotassic intrusive rocks from the Gondwana sedimentary basins, Damodar Valley, Eastern India; Earth Sci. Rev. 136 96–120.

    Google Scholar 

  • Chatterjee N and Ghose N C 2011 Extensive Early Neoproterozoic high-grade metamorphism in North Chotanagpur Gneissic Complex of the Central Indian Tectonic Zone; Gondwana Res. 20 362–379.

    Google Scholar 

  • Chatterjee N, Crowley J L and Ghose N C 2008 Geochronology of the 1.55 Ga Bengal anorthosite and Grenvillian metamorphism in the Chotanagpur gneissic complex, eastern India; Precamb. Res. 161 303–316.

    Google Scholar 

  • Chatterjee S, Goswami A and Scotese C R 2013 The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia; Gondwana Res. 23 238–267.

    Google Scholar 

  • Chenet A L, Quidelleur X, Fluteau F and Courtillot V 2007 40K–39Ar dating of the main Deccan large igneous province: Further evidence of KTB age and short duration; Earth Planet. Sci. Lett. 263 1–15.

    Google Scholar 

  • Chenet A L, Fluteau F, Courtillot V, Gerard M and Subbarao K V 2008 Determination of rapid Deccan eruptions across the cretaceous–tertiary boundary using paleomagnetic secular variation: Results from a 1200 m-thick section in the Mahabaleshwar; J. Geophys. Res. 113, https://doi.org/10.1029/2006JB004635.

    Article  Google Scholar 

  • Chenet A L, Courtillot V, Fluteau F, Gérard M, Quidelleur M, Khadri S F R, Subbarao K V and Thordarson T 2009 Determination of rapid Deccan eruptions across the cretaceous–tertiary boundary using paleomagnetic secular variation: 2. Constraints from analysis of eight new sections and synthesis for a 3500 m thick composite section; J. Geophys. Res. 114 B06103, https://doi.org/10.1029/2008JB005644.

    Article  Google Scholar 

  • Coffin M F and Eldholm O 1994 Large igneous provinces: Crustal structure, dimensions, and external consequences; Rev. Geophys. 32 1–36.

    Google Scholar 

  • Coffin M F and Eldholm O 2005 Large igneous provinces; In: Encyclopedia of Geology (eds) Selley R C, Cocks L R M and Plimer I R, Elsevier, Oxford, pp. 315–323.

    Google Scholar 

  • Coffin M F, Pringle M S, Duncan R A, Gladezenko T P, Storey M, Müller R D and Gahagan L A 2002 Kerguelen hotspot magma output since 130 Ma; J. Petrol. 43 1121–1139.

    Google Scholar 

  • Courtillot V, Besse J, Vandamme D, Montigny R, Jaeger J J and Cappetta H 1986 Deccan flood basalts at the Cretaceous/Tertiary boundary?; Earth Planet. Sci. Lett. 80 361–374.

    Google Scholar 

  • Courtillot V, Féraud G, Maluski H, Vandamme D, Moreau M G and Besse J 1988 Deccan flood basalts and the Cretaceous/tertiary boundary; Nature 333 843–846.

    Google Scholar 

  • Courtillot V, Gallet Y, Rocchia R, Féraud, G, Robin E, Hofmann C, Bhandari N and Ghevariya Z G 2000 Cosmic markers, 40Ar/39Ar dating and paleomagnetism of the KT sections in the Anjar Area of the Deccan large igneous province; Earth Planet. Sci. Lett. 182 137–156.

    Google Scholar 

  • Cox K G 1989 The role of mantle plumes in the development of continental drainage patterns; Nature 342 873–877.

    Google Scholar 

  • Duncan R A and Pyle D G 1988 Rapid eruption of the Deccan flood basalts at the Cretaceous/Tertiary boundary; Nature 333 841–843.

    Google Scholar 

  • Ernst R E 2014 Large Igneous Provinces, Cambridge University Press, 653p.

  • Ghatak A and Basu A R 2011 The Sylhet Traps: Vestiges of the Kerguelen plume in NE India; Earth Planet. Sci. Lett. 308 52–64.

    Google Scholar 

  • Ghose N C and Chatterjee N 2008 Petrology, tectonic setting and source of dykes and related magmatic bodies in Chotanagpur gneissic complex, eastern India; In: Indian Dykes: Geochemistry, Geophysics and Geochronology (eds) Srivastava R K, Sivaji Ch and Chalapathi Rao N V, Narosa Publishing House Pvt. Ltd., New Delhi, pp. 471–493.

    Google Scholar 

  • Hofmann C, Féraud G and Courtillot V 2000 40Ar/39Ar dating of mineral separates and whole rocks from the Western Ghats lava pile: Further constraints on duration and age of the Deccan traps; Earth Planet. Sci. Lett. 180 13–27.

    Google Scholar 

  • Hooper P R, Widdowson M and Kelley S P 2010 Tectonic setting and timing of the final Deccan flood basalt eruptions; Geology 38 839–842.

    Google Scholar 

  • Jay A E and Widdowson M 2008 Stratigraphy, structure and volcanology of the SE Deccan continental flood basalt province: Implications for eruptive extent and volumes; J. Geol. Soc. 165 177–188.

    Google Scholar 

  • Kent R W, Saunders A D, Kempton P D and Ghose N C 1997 Rajmahal basalts, eastern India: Mantle source and melt distribution at a volcanic rifted margin; In: Large Igneous Provinces – Continental, Oceanic and Planetary Flood Volcanism (eds) Mahoney J J and Coffin M F, Geophysical Monograph Series 100 145–182.

  • Kent R W, Kelley S P and Pringle M S 1998 Mineralogy and 40Ar/39Ar geochronology of orangeites (Group II kimberlites) from the Damodar valley, eastern India; Mineral. Mag. 63 313–323.

    Google Scholar 

  • Kent R W, Pringle M S, Müller R D, Saunders A D and Ghose N C 2002 40Ar/39Ar geochronology of the Rajmahal basalts, India, and their relationship to the Kerguelen Plateau; J. Petrol. 43 1141–1153.

    Google Scholar 

  • Kerr A C, Khan M, Mahoney J J, Nicholson K N and Hall C M 2010 Late Cretaceous alkaline sills of the south Tethyan suture zone, Pakistan: Initial melts of the Réunion hotspot?; Lithos 117 161–171.

    Google Scholar 

  • Knight K B, Renne P R, Halkett A and White N 2003 40Ar/39Ar dating of the Rajahmundry Traps, eastern India and their relationship to the Deccan trap; Earth Planet. Sci. Lett. 208 85–99.

    Google Scholar 

  • Koppers A A P 2002 ArArCALC–software for 40Ar/39Ar age calculations; Comput. Geosci. 28 605–619.

    Google Scholar 

  • Kumar A and Ahmad T 2007 Geochemistry of mafic dykes in part of Chotanagpur gneissic complex: Petrogenetic and tectonic implications; Geochem. J. 41 173–186.

    Google Scholar 

  • Kumar A, Pal S and Shrivastava J P 2020 Contemporary researches and issues related to the Deccan volcamism; Proc. Indian Acad. Sci. (in press).

  • Lehmann B, Burgess R, Frei D, Mainkar D, Chalapathi Rao N V and Heaman L M 2010 Diamondiferous kimberlites in central India synchronous with the Deccan basalts; Earth Planet. Sci. Lett. 290 142–149.

    Google Scholar 

  • Mahadevan T M 2002 Geology of Bihar and Jharkhand, Geological Society of India, Bangalore, 563p.

    Google Scholar 

  • Mahoney J J 1988 Deccan Traps; In: Continental Flood Basalts (ed.) MacDougall J D, Dordrecht, Kluwer, pp. 151–194.

    Google Scholar 

  • Mahoney J J, Duncan R A, Khan W, Gnos E and McCormick G R 2002 Cretaceous volcanic rocks of the South Tethyan suture zone, Pakistan: Implications for the Reunion hotspot and Deccan Traps; Earth Planet. Sci. Lett. 203 295–310.

    Google Scholar 

  • Melluso L, Srivastava R K, Petrone C M, Guarino V and Sinha A K 2012 Mineralogy and magmatic affinity of the Jasra Intrusive Complex, Shillong Plateau, India; Mineral. Mag. 76 1099–1117.

    Google Scholar 

  • Morgan J W 1981 Hotspot tracks and the opening of the Atlantic and Indian Oceans; In: The Sea (ed.) Emiliani C, John Wiley, New York, pp. 443–487.

    Google Scholar 

  • Naqvi S M and Rogers J J W 1987 Precambrian Geology of India, Oxford Monographs on Geology and Geophysics No. 6, Oxford University Press, New York, 233p.

  • Pande K 2002 Age and duration of the Deccan Traps, India: A review of radiometric and paleomagnetic constraints; Proc. Indian Acad. Sci. (Earth Planet. Sci.) 111 115–123.

  • Pande K, Venkatesan T R, Gopalan K, Krishnamurthy P and Macdougall J D 1988 40Ar–39Ar of alkaline basalts from Kutch, Deccan volcanic Province; In: Deccan Flood Basalts (ed.) Subbarao K V, Geol. Soc. India Memoir 10 145–150.

  • Parisio L, Jourdan F, Marzoli A, Melluso L, Sethna S F and Bellieni G 2016 40Ar/39Ar ages of alkaline and tholeiitic rocks from the northern Deccan Traps: Implications for magmatic processes and the K–Pg boundary; J. Geol. Soc. 173 679–688.

    Google Scholar 

  • Patil S K and Arora B R 2008 Palaeomagnetic and rock magnetic studies on the intrusive from Raniganj basin, Damodar valley: Linkage to the Rajmahal volcanic; In: Indian Dykes: Geochemistry, Geophysics and Geochronology (eds) Srivastava R K, Sivaji C and Chalapathi Rao N V, Narosa Publishing House Pvt Ltd, New Delhi, pp. 511–526.

    Google Scholar 

  • Paul D K 2005 Petrology and geochemistry of the Salma dyke, Raniganj coalfield (Lower Gondwana), eastern India: Linkage with Rajmahal or Deccan volcanic activity?; J. Asian Earth Sci. 25 903–913.

    Google Scholar 

  • Rainbird R and Ernst R E 2001 The sedimentary record of mantle–plume uplift; In: Mantle plumes: Their identification through time (eds) Ernst R E and Buchan K L, Geol. Soc. Am. Spec. Paper 352 227–245.

  • Ramakrishnan M and Vaidyanadhan R 2010 Geology of India; Geol. Soc. India, Bangalore, 994p.

    Google Scholar 

  • Renne P R, Balco G, Ludwig K R, Mundil R and Min K 2011 Response to the comment by W.H. Schwarz et al. on ‘Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology’ by P R Renne et al. (2010); Geochim. Cosmochim. Acta 75 5097–5100.

    Google Scholar 

  • Saunders A D, Jones S M, Morgan L A, Pierce K L, Widdowson M and Xu Y 2007 Regional uplift associated with continental large igneous provinces: The role of mantle plumes and the lithosphere; Chem. Geol. 241 282–318.

    Google Scholar 

  • Schoene B, Samperton K M, Eddy M P, Keller G, Adatte T, Bowring S A, Khadri S F R and Gertsch B 2015 U–Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction; Science 347 182–184.

    Google Scholar 

  • Schoene B, Eddy M P, Samperton K M, Keller B, Keller G, Adatte T and Khadri S F R 2019 U–Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction; Science 363 862–866.

    Google Scholar 

  • Sen G 2001 Generation of Deccan trap magmas; J. Earth Syst. Sci. 110 409–431.

    Google Scholar 

  • Sen G, Hames W E, Paul D K, Biswas S K, Ray A and Sen I S 2016 Pre-Deccan and Deccan magmatism in Kutch, India: Implications of new 40Ar/39Ar ages of intrusions; Geol. Soc. India Spec. Publ. 6 211–222.

    Google Scholar 

  • Sharma R S 2009 Cratons and Fold Belts of India, Springer-Verlag, Heidelburg, 304p.

    Google Scholar 

  • Sheth H, Vanderkluysen L, Demonterova E I, Ivanov A V and Savatenkov V M 2019 Geochemistry and 40Ar/39Ar geochronology of the Nandurbar–Dhule mafic dyke swarm: Dyke-sill-flow correlations and stratigraphic development across the Deccan flood basalt province; Geol. J. 54 157–176.

    Google Scholar 

  • Shrivastava J P, Duncan R A and Kashyap M 2015 Post-K/PB younger 40Ar–39Ar ages of the Mandla lavas: Implications for the duration of the Deccan volcanism; Lithos 224–225 214–224.

    Google Scholar 

  • Shrivastava J P, Kumar R and Rani N 2017 Feeder and post Deccan Trap dyke activities in the northern slope of the Satpura Mountain: Evidence from new 40Ar–39Ar ages; Geosci. Front., https://doi.org/10.1016/j.gsf.2016.04.001.

  • Sprain C J, Renne P R, Vanderkluysen L, Pande K, Self S and Mittal T 2019 The eruptive tempo of Deccan volcanism in relation to the Cretaceous–Paleogene boundary; Science 363 866–870.

    Google Scholar 

  • Srivastava R K 2020 Early Cretaceous alkaline/ultra-alkaline and carbonatite magmatism in the Indian Shield – a review: Implications for a possible remnant of the Greater Kerguelen large igneous provinces; Episodes, https://doi.org/10.18814/epiiugs/2020/020017.

    Article  Google Scholar 

  • Srivastava R K, Chalapathi Rao N V C and Sinha A K 2009 Cretaceous potassic intrusives with affinities to aillikites from Jharia area: Magmatic expression of metasomatically veined and thinned lithospheric beneath Singhbhum Craton, Eastern Indian; Lithos 112 407–418.

    Google Scholar 

  • Srivastava R K, Sinha A K and Kumar S 2012 Geochemical characteristics of Mesoproterozoic metabasite dykes from the Chhotanagpur Gneissic Terrain, eastern India: Implications for their emplacement in a plate margin tectonic environment; J. Earth Syst. Sci. 121 509–523.

    Google Scholar 

  • Srivastava R K, Kumar S, Sinha A K and Chalapathi Rao N V 2014 Petrology and geochemistry of high-titanium and low-titanium mafic dykes from the Damodar valley, Chhotanagpur Gneissic Terrain, eastern India and their relation to mantle plume(s); J. Asian Earth Sci. 84 34–50.

    Google Scholar 

  • Srivastava R K, Wang F, Shi W, Sinha A K and Buchan K L 2020 The nature of Cretaceous dolerite dykes of two distinct trends in the Damodar Valley, eastern India: Constraints on their linkage to mantle plumes and large igneous provinces from 40Ar/39Ar geochronology and geochemistry; Lithosphere 12 40–52, http://orcid.org/0000-0003-0549-6597.

  • Srivastava R K, Guarino V, Wu Fu-Yuan, Melluso L and Sinha A K 2019 Evidence of sub-continental lithospheric mantle sources and open-system crystallization processes from in-situ U–Pb ages and Nd–Sr–Hf isotope geochemistry of the Cretaceous ultramafic–alkaline–(carbonatite) intrusions from the Shillong Plateau, north-eastern India; Lithos 330–331 108–119.

    Google Scholar 

  • Vandamme D and Courtillot V 1992 Paleomagnetic constraints on the structure of the Deccan traps; Phys. Earth Planet. Inter. 74 241–261.

    Google Scholar 

  • Wang F F, Jourdan C-H, Lo S, Nomade H, Guillou R X, Zhu L, Yang W, Shi H, Feng L Wu and Sang H 2014 YBCs: A new standard for 40Ar/39Ar dating; Chem. Geol. 388 87–98.

    Google Scholar 

  • White R W and McKenzie D P 1989 Magmatism at rift zones: The generation of volcanic continental margins and flood basalts; J. Geophys. Res. 94 7685–7729.

    Google Scholar 

  • Widdowson M, Pringle M S and Fernandez O A 2000 A post K–T boundary (early Palaeocene) age for Deccan-type feeder dykes, Goa, India; J. Petrol. 41 1177–1194.

    Google Scholar 

Download references

Acknowledgements

RKS thanks the Science and Engineering Research Board (SERB) for the financial support through a research project (No. EMR/2016/000169), and the Head, Department of Geology, Banaras Hindu University, for extending all necessary facilities required during this work. Authors are grateful to J P Shrivastava and the anonymous reviewer for providing constructive comments and suggestions which have improved the manuscript considerably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh K Srivastava.

Additional information

Communicated by Rajneesh Bhutani

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, R.K., Wang, F. & Shi, W. Substantiation of Réunion plume induced prolonged magmatic pulses (ca. 70.5–65.5 Ma) of the Deccan LIP in the Chhotanagpur Gneissic Complex, eastern India: Constraints from 40Ar/39Ar geochronology. J Earth Syst Sci 129, 96 (2020). https://doi.org/10.1007/s12040-020-1364-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-020-1364-6

Keywords

Navigation