Skip to main content
Log in

Realistic soil particle generation based on limited morphological information by probability-based spherical harmonics

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

Three-dimensional imaging techniques, such as X-ray computed tomography, have been used to scan realistic particle geometries. However, these techniques are labor intensive, time-consuming, and costly to obtain a large number of particles. Therefore, it is desirable if computers can be taught to generate realistic particles based on given morphological properties. This paper develops a particle generation technique by integrating spherical harmonics and probability functions. This technique only requires morphological information from one particle to generate a large number of particles and eliminates the need for scanning many particles for particle generation. The spherical harmonics coefficients of this particle are analog of the morphological gene. The probability function is used to add variances to spherical harmonics coefficients to simulate gene mutation. A dimensionless factor is developed to control degrees of gene mutation. The effectiveness and accuracy of the proposed technique are verified by particle shape descriptors computed by the computational geometry techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Cho G-C, Dodds J, Santamarina JC (2006) Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. J Geotech Geoenviron Eng 132:591–602. https://doi.org/10.1061/(asce)1090-0241(2006)132:5(591)

    Article  Google Scholar 

  2. Altuhafi FN, Coop MR, Georgiannou VN (2016) Effect of particle shape on the mechanical properties of natural sands. J Geotech Geoenvironmental Eng 142:1–15. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001569

    Article  Google Scholar 

  3. Shin H, Santamarina JC (2013) Role of particle angularity on the mechanical behavior of granular mixtures. J Geotech Geoenviron Eng 139:353–355. https://doi.org/10.1061/(asce)gt.1943-5606.0000768

    Article  Google Scholar 

  4. Alshibli KA, Cil MB (2018) Influence of particle morphology on the friction and dilatancy of sand. J Geotech Geoenvironmental Eng 144:04017118. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001841

    Article  Google Scholar 

  5. Zheng J, Hryciw RD, Ventola A (2017) Compressibility of sands of various geologic origins at pre-crushing stress levels. Geol Geotech Eng. https://doi.org/10.1007/s10706-017-0225-9

    Article  Google Scholar 

  6. Jerves AX, Kawamoto RY, Andrade JE (2016) Effects of grain morphology on critical state: a computational analysis. Acta Geotech 11:493–503. https://doi.org/10.1007/s11440-015-0422-8

    Article  Google Scholar 

  7. Liu X, Yang J (2018) Shear wave velocity in sand: effect of grain shape. Géotechnique 68:742–748. https://doi.org/10.1680/jgeot.17.t.011

    Article  Google Scholar 

  8. Bareither CA, Edil TB, Benson CH, Mickelson DM (2008) Geological and physical factors affecting the friction angle of compacted sands. J Geotech Geoenviron Eng 134:1476–1489. https://doi.org/10.1061/(asce)1090-0241(2008)134:10(1476)

    Article  Google Scholar 

  9. Zheng J, Hryciw RD (2016) Index void ratios of sands from their intrinsic properties. J Geotech Geoenvironmental Eng 142:1–10. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001575

    Article  Google Scholar 

  10. Zheng J, Hryciw RD (2017) Particulate material fabric characterization by rotational haar wavelet transform. Comput Geotech 88:46–60. https://doi.org/10.1016/j.compgeo.2017.02.021

    Article  Google Scholar 

  11. Kandasami RK, Murthy TG (2015) Effect of particle shape on the mechanical response of a granular ensemble. In: 3rd international symposium on geomechanics from micro to macro, SEP 01-03, 2014, Univ Cambridge, Cambridge, England, pp 1093–1098

  12. Nouguier-Lehon C, Cambou B, Vincens E (2003) Influence of particle shape and angularity on the behaviour of granular materials: a numerical analysis. Int J Numer Anal Methods Geomech 27:1207–1226. https://doi.org/10.1002/nag.314

    Article  MATH  Google Scholar 

  13. Vangla P, Roy N, Gali ML (2017) Image based shape characterization of granular materials and its effect on kinematics of particle motion. Granul Matter. https://doi.org/10.1007/s10035-017-0776-8

    Article  Google Scholar 

  14. Cavarretta I, O’Sullivan C, Coop MR (2010) The influence of particle characteristics on the behaviour of coarse grained soils. Geotechnique 60:413–423. https://doi.org/10.1680/geot.2010.60.6.413

    Article  Google Scholar 

  15. Zheng J, Hryciw RD (2016) A corner preserving algorithm for realistic DEM soil particle generation. Granul Matter 18:84. https://doi.org/10.1007/s10035-016-0679-0

    Article  Google Scholar 

  16. Zheng J, Hryciw RD (2017) An image based clump library for DEM simulations. Granul Matter 19:1–15. https://doi.org/10.1007/s10035-017-0713-x

    Article  Google Scholar 

  17. Druckrey AM, Alshibli KA, Al-Raoush RI (2016) 3D characterization of sand particle-to-particle contact and morphology. Comput Geotech 74:26–35. https://doi.org/10.1016/j.compgeo.2015.12.014

    Article  Google Scholar 

  18. Cil MB, Alshibli KA, Kenesei P (2017) 3D experimental measurement of lattice strain and fracture behavior of sand particles using synchrotron X-ray diffraction and tomography. J Geotech Geoenvironmental Eng 143:1–18. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001737

    Article  Google Scholar 

  19. Zhou W, Yuan W, Ma G, Chang XL (2016) Combined finite-discrete element method modeling of rockslides. Eng Comput 33(5):1530–1559

    Article  Google Scholar 

  20. Sun Q, Zheng J, Li C (2019) Improved watershed analysis for segmenting contacting particles of coarse granular soils in volumetric images. Powder Technol 356:295–303. https://doi.org/10.1016/j.powtec.2019.08.028

    Article  Google Scholar 

  21. Sun Q, Zheng J (2019) Two-dimensional and three-dimensional inherent fabric in cross-anisotropic granular soils. Comput Geotech 116:103197. https://doi.org/10.1016/j.compgeo.2019.103197

    Article  Google Scholar 

  22. Sun Q, Zheng J, He H, Li Z (2019) Particulate material fabric characterization from volumetric images by computational geometry. Powder Technol 344:804–813. https://doi.org/10.1016/j.powtec.2018.12.070

    Article  Google Scholar 

  23. Liu X, Garboczi EJ, Grigoriu M et al (2011) Spherical harmonic-based random fields based on real particle 3D data: improved numerical algorithm and quantitative comparison to real particles. Powder Technol 207:78–86. https://doi.org/10.1016/j.powtec.2010.10.012

    Article  Google Scholar 

  24. Kim H, Haas CT, Rauch AF, Browne C (2002) Dimensional ratios for stone aggregates from three-dimensional laser scans. J Comput Civ Eng 16:175–183. https://doi.org/10.1061/(ASCE)0887-3801(2002)16:3(175)

    Article  Google Scholar 

  25. Hayakawa Y, Oguchi T (2005) Evaluation of gravel sphericity and roundness based on surface-area measurement with a laser scanner. Comput Geosci 31:735–741. https://doi.org/10.1016/j.cageo.2005.01.004

    Article  Google Scholar 

  26. Anochie-boateng JK, Komba JJ, Mvelase GM (2013) Three-dimensional laser scanning technique to quantify aggregate and ballast shape properties. Constr Build Mater 43:389–398. https://doi.org/10.1016/j.conbuildmat.2013.02.062

    Article  Google Scholar 

  27. Otsubo M, O’sullivan C, Sim WW, Ibraim E (2015) Quantitative assessment of the influence of surface roughness on soil stiffness. Géotechnique 65:694–700. https://doi.org/10.1680/geot.14.T.028

    Article  Google Scholar 

  28. Alshibli KA, Alsaleh MI (2004) Characterizing surface roughness and shape of sands using digital microscopy. J Comput Civ Eng 18:36–45. https://doi.org/10.1061/~ASCE!0887-3801~2004!18:1~36!

    Article  Google Scholar 

  29. Zheng J, Hryciw RD (2014) Soil particle size characterization by stereophotography. In: Geotechnical special publication, pp 64–73

  30. Zheng J, Hryciw RD, Ohm H-S (2014) Three-Dimensional Translucent Segregation Table (3D-TST) test for soil particle size and shape distribution. Geomech Micro Macro 1037–1042

  31. Zheng J, Hryciw RD (2017) Soil particle size and shape distributions by stereophotography and image analysis. Geotech Test J 40:317–328. https://doi.org/10.1520/GTJ20160165

    Article  Google Scholar 

  32. Sun Q, Zheng Y, Li B et al (2019) Three-dimensional particle size and shape characterisation using structural light. Géotechnique Lett 9:72–78

    Article  Google Scholar 

  33. Jerves AX, Kawamoto RY, Andrade JE (2017) A geometry-based algorithm for cloning real grains. Granul Matter 19:1–10. https://doi.org/10.1007/s10035-017-0716-7

    Article  Google Scholar 

  34. Grigoriu M, Garboczi E, Kafali C (2006) Spherical harmonic-based random fields for aggregates used in concrete. Powder Technol 166:123–138. https://doi.org/10.1016/j.powtec.2006.03.026

    Article  Google Scholar 

  35. Zhou B, Wang J, Zhao B (2015) Micromorphology characterization and reconstruction of sand particles using micro X-ray tomography and spherical harmonics. Eng Geol 184:126–137. https://doi.org/10.1016/j.enggeo.2014.11.009

    Article  Google Scholar 

  36. Wei D, Wang J, Nie J, Zhou B (2018) Generation of realistic sand particles with fractal nature using an improved spherical harmonic analysis. Comput Geotech 104:1–12. https://doi.org/10.1016/j.powtec.2018.02.006

    Article  Google Scholar 

  37. Su D, Yan WM (2018) 3D characterization of general-shape sand particles using microfocus X-ray computed tomography and spherical harmonic functions, and particle regeneration using multivariate random vector. Powder Technol 323:8–23. https://doi.org/10.1016/j.powtec.2017.09.030

    Article  Google Scholar 

  38. Baron Fourier JBJ (1822) Théorie analytique de la chaleur. F. Didot, Paris

    MATH  Google Scholar 

  39. Baron Fourier JBJ (1878) The analytical theory of heat. The University Press, Cambridge

    Google Scholar 

  40. Mollon G, Zhao J (2014) 3D generation of realistic granular samples based on random fields theory and Fourier shape descriptors. Comput Methods Appl Mech Eng 279:46–65. https://doi.org/10.1016/j.cma.2014.06.022

    Article  MATH  Google Scholar 

  41. Wei D, Wang J, Zhao B (2018) A simple method for particle shape generation with spherical harmonics. Powder Technol 330:284–291

    Article  Google Scholar 

  42. Altuhafi FN, O’Sullivan C, Cavarretta I (2013) Analysis of an image-based method to quantify the size and shape of sand particles. J Geotech Geoenviron Eng 139:1290–1307. https://doi.org/10.1061/(asce)gt.1943-5606.0000855

    Article  Google Scholar 

  43. Krumbein WC, Sloss LL (1951) Stratigraphy and sedimentation. W.H. Freeman and Company, San Francisco

    Book  Google Scholar 

  44. Riley NA (1941) Projection sphericity. SEPM J Sediment Res. https://doi.org/10.1306/d426910c-2b26-11d7-8648000102c1865d

    Article  Google Scholar 

  45. Wadell H (1935) Volume, shape, and roundness of quartz particles. J Geol 43:250–280. https://doi.org/10.1086/624298

    Article  Google Scholar 

  46. Sprinthall RC, Fisk ST (1990) Basic statistical analysis. Prentice Hall, Englewood Cliffs

    Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the U.S. National Science Foundation under Grant No. CMMI 1917332. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junxing Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Zheng, J. Realistic soil particle generation based on limited morphological information by probability-based spherical harmonics. Comp. Part. Mech. 8, 215–235 (2021). https://doi.org/10.1007/s40571-020-00325-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-020-00325-6

Keywords

Navigation