Skip to main content
Log in

A Foreground Self-calibration Technique for High-Resolution Switched-Current R-2R Digital-to-Analog Converters

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A foreground calibration technique for switched-current R-2R digital-to-analog converter is proposed. To implement the method, some intermediate nodes are added to the circuit and calibration is done using these nodes to circumvent both current source and resistor mismatches at the output node. A 12-bit, 500-MHz DAC is designed in 0.18 \(\upmu \)m standard CMOS technology with the proposed technique. Simulation results verify that the degraded DAC performance due to the mismatch effects enhances up to 11.5 bits after calibration, imposing a very low power penalty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. P.D. Aluthwala, N. Weste, A. Adams, T. Lehmann, S. Parameswaran, Partial dynamic element matching technique for digital-to-analog converters used for digital harmonic-cancelling sine-wave synthesis. IEEE Trans. Circuits Syst. I Regul. Pap. 64, 296–309 (2017)

    Article  Google Scholar 

  2. E. Ansari, D.D. Wentzloff, A 5 mW 250 MS/s 12-bit synthesized digital to analog converter, in Proceedings of the IEEE 2014 Custom Integrated Circuits Conference, San Jose, CA (2014), pp. 1–4

  3. R.V.V. Bapeswara, R.K. Sankara, Equivalent circuit for a multiplying D/A converter. IEEE Trans. Circuits Syst. 32, 1199–1200 (1985)

    Article  Google Scholar 

  4. J. Bastos, A.M. Marques, M.S.J. Steyaert, W. Sansen, A 12-bit intrinsic accuracy high-speed CMOS DAC. IEEE J. Solid-State Circuits 33, 1959–1969 (1998)

    Article  Google Scholar 

  5. M. Byrne, Implement infinite sample-and-hold circuits Using analog input/output ports, in Analog Devices: Application Note AN-248

  6. P.S. Crovetti, All-digital high resolution D/A conversion by dyadic digital pulse modulation. IEEE Trans. Circuits Syst. I Regul. Pap. 64, 573–584 (2017)

    Article  Google Scholar 

  7. K. Doris, J. Briaire, D. Leenaerts, M. Vertreg, D. van Roermund, A 12b 500MS, s DAC with \({>}\)70 dB SFDR up to 120 MHz in \(0.18\,\mu {{\rm m}}\) CMOS, ISSCC, in IEEE International Digest of Technical Papers. Solid-State Circuits Conference, San Francisco, CA, vol. 1 (2005), pp. 116–588

  8. A.A. Eielsen, A.J. Fleming, Improving DAC resolution in closed-loop control of precision mechatronic systems using dithering, in IEEE 55th Conference on Decision and Control (CDC), (2016), pp. 855–861

  9. E.D. Erb, G.M. Wierzba, Expression for the output resistance of a switched R-2R ladder network. IEEE Trans. Circuits Syst. 30, 167–169 (1983)

    Article  Google Scholar 

  10. C.R. Grace, P.J. Hurst, S.H. Lewis, A 12-bit 80-MSample/s pipelined ADC with bootstrapped digital calibration. IEEE J. Solid-State Circuits 40, 1038–1046 (2005)

    Article  Google Scholar 

  11. D.S. Karadimas, D.N. Mavridis, K.A. Efstathiou, A digitally calibrated R-2R ladder architecture for high performance digital-to-analog converters, in IEEE International Symposium on Circuits and Systems (2006), pp. 4779–4782

  12. C.H. Lin, F.M.I. Goes, J. Westra, J. Mulder, Y. Lin, E. Arslan, E. Ayranci, X. Liu, K. Bult, A 12b 2.9 GS, s DAC with IM3 \(\ll - 60\) dBc beyond 1 GHz in 65 nm CMOS, in IEEE International Solid-State Circuits Conference-Digest of Technical Papers, San Francisco, CA, (2009), pp. 74–75

  13. W.T. Lin, T.H. Kuo, A 12b 1.6 GS/s 40 mW DAC in 40 nm CMOS with \(>\) 70 dB SFDR over entire Nyquist bandwidth, in IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA (2013), pp. 474–475

  14. W.T. Lin, H.Y. Huang, T.H. Kuo, A 12-bit 40 nm DAC achieving SFDR \(>\) 70 dB at 1.6 GS/s and IMD \(< -61\,{{\rm dB}}\) at 2.8 GS/s with DEMDRZ technique. IEEE J. Solid-State Circuits 49, 708–717 (2014)

    Article  Google Scholar 

  15. D. Marche, Y. Savaria, Y. Gagnon, Laser fine-tuneable deep-submicrometer CMOS 14-bit DAC. IEEE Trans. Circuits Syst. 55, 2157–2165 (2008)

    Article  MathSciNet  Google Scholar 

  16. D. Marche, Y. Savaria, Modeling R-2R segmented-ladder DACs. IEEE Trans. Circuits Syst. I(57), 31–43 (2010)

    Article  MathSciNet  Google Scholar 

  17. D. Marche, Y. Savaria, Y. Gagnon, An improved switch compensation technique for inverted R-2R ladder DACs. IEEE Trans. Circuits Syst. I(56), 1115–1124 (2009)

    Article  MathSciNet  Google Scholar 

  18. M.S. Mehrjoo, J.F. Buckwalter, A 10-b, 300-MS/s power DAC with 6-Vpp differential swing, in IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Seattle, WA, (2013), pp. 163–166

  19. B. Murmann, Digitally assisted analog circuits, in IEEE Hot Chips XVII Symposium (HCS), vol. 26 (2006), pp. 38–47

  20. S. Pavan, N. Krishnapura, R. Pandarianathan, P. Sankar, A 90 \(\mu \)W 15-bit \({\Delta } {\varSigma }\) ADC for digital audio, in ESSCIRC 2007—33rd European Solid-State Circuits Conference, Munich (2007), pp. 198–201

  21. M.J.M. Pelgrom, A.C.J. Duinmaijer, A.P.G. Welbers, Matching properties of MOS transistors. IEEE J. Solid-State Circuits 24(5), 1433–1439 (1989)

    Article  Google Scholar 

  22. R. Poujois, J. Borel, A low drift fully integrated MOSFET operational amplifier. IEEE J. Solid-State Circuits 13, 499–503 (1978)

    Article  Google Scholar 

  23. M.H. Shen, P.C. Huang, A low cost calibrated DAC for high-resolution video display system. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20, 1743–1747 (2012)

    Article  Google Scholar 

  24. Y. Tang, J. Briarie, K. Doris, R. van Veldhoven, P.C.W. van Beek, H.J.A. Hegt, A.H.M. Roermund, A 14b 200MS/s DAC with SFDR \({>}\) 78 dBc, IM3 \({<} -83\,{\rm dBc}\) and NSD \({<} -163\,{\rm dBm/Hz}\) across the whole Nyquist band enabled by dynamic-mismatch mapping, in Symposium on VLSI Circuits, Honolulu, HI (2010), pp. 151–152

  25. W.H. Tseng, W.C. Fan, J.T. Wu, A 12b 1.25 GS/s DAC in 90nm CMOS with \(> 70\,{\rm dB}\) SFDR up to 500 MHz. IEEE J. Solid-State Circuits 46, 2845–2856 (2011)

    Article  Google Scholar 

  26. L. Wang, Y. Fukatsu, K. Watanabe, Characterization of current-mode CMOS R-2R ladder digital-to-analog converters. IEEE Trans. Instrum. Meas. 50, 1781–1786 (2001)

    Article  Google Scholar 

  27. K. Wu, L. Du, S. Wu, G. He, N. Ning, Q. Yu, Y. Liu, A fast successive approximation calibration technique with bypass window in DACs, in IEEE International Nanoelectronics Conference (INEC), Chengdu (2016), pp. 1–2

  28. C. Zhang, Z. Li, C. Lv, J. Zhao,D. Wang, Y. Xu, Y. Guo, A 10-bit 100 MS/s CMOS current-steering DAC, in IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB) (2016), pp. 1–4

  29. J. Zurada, K. Goodman, Equivalent circuit of multiplying DAC using R-2R ladder network. Electron. Lett. 16, 925–927 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Esmaili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaili, A., Babazadeh, H. A Foreground Self-calibration Technique for High-Resolution Switched-Current R-2R Digital-to-Analog Converters. Circuits Syst Signal Process 39, 2307–2327 (2020). https://doi.org/10.1007/s00034-019-01284-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01284-x

Keywords

Navigation