Skip to main content
Log in

Parameter-Free Landweber Iteration Method for Robust Adaptive Beamforming

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel parameter-free Landweber iteration (LI) method to improve the robustness of a beamformer based on the LI algorithm and the L-curve criterion. The critical aspect of the proposed method is the automatic parameter selection procedure, which determines the iteration stop number in a scenario-dependent manner. This parameter-free method can flexibly adapt to different communication environments. To further improve the computational efficiency, an accelerated parameter-free LI method is also proposed that incorporates the Newton iteration into the LI algorithm without compromising the robustness of the beamformer. Numerical experiments demonstrate the effectiveness of the proposed beamformer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Bertero, P. Boccacci, Introduction to Inverse Problems in Imaging (IOP, Bristol, 1998)

    Book  Google Scholar 

  2. B.D. Carlson, Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Trans. Aerosp. Electron. Syst. 24(4), 397–401 (1988)

    Article  Google Scholar 

  3. L. Du, J. Li, P. Stoica, Fully automatic computation of diagonal loading levels for robust adaptive beamforming. IEEE Trans. Aerosp. Electron. Syst. 46(1), 449–458 (2010)

    Article  Google Scholar 

  4. D.D. Feldman, L.J. Griffiths, A projection approach for robust adaptive beamforming. IEEE Trans. Signal Process. 42(4), 867–876 (1994)

    Article  Google Scholar 

  5. Y. Gu, A. Leshem, Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation. IEEE Trans. Signal Process. 60(7), 3881–3885 (2012)

    Article  MathSciNet  Google Scholar 

  6. Y. Gu, N.A. Goodman, S. Hong, Y. Li, Robust adaptive beamforming based on interference covariance matrix sparse reconstruction. Signal Process. 96, 375–381 (2014)

    Article  Google Scholar 

  7. M. Hanke, Accelerated Landweber iterations for the solution of ill-posed equations. Numer. Math. 60(3), 341–373 (1991)

    Article  MathSciNet  Google Scholar 

  8. M. Hanke, A. Neubauer, O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems. Numer. Math. 72(1), 21–37 (1995)

    Article  MathSciNet  Google Scholar 

  9. P.C. Hansen, Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34(4), 561–580 (1992)

    Article  MathSciNet  Google Scholar 

  10. P.C. Hansen, Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems. Numer. Algorithms 6(1), 1–35 (1994)

    Article  MathSciNet  Google Scholar 

  11. P.C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion (SIAM, Philadelphia, 1998), pp. 187–192

    Book  Google Scholar 

  12. X. Jiang, W. Zeng, A. Yasotharan, H.C. So, T. Kirubarajan, Robust beamforming by linear programming. IEEE Trans. Signal Process. 62(7), 1834–1849 (2014)

    Article  MathSciNet  Google Scholar 

  13. B. Kaltenbacher, I. Tomba, Convergence rates for an iteratively regularized Newton–Landweber iteration in Banach space. Inverse Prob. (2013). https://doi.org/10.1088/0266-5611/29/2/025010

    Article  MathSciNet  MATH  Google Scholar 

  14. Y. Ke, C. Zheng, R. Peng, X. Li, robust adaptive beamforming using noise reduction preprocessing-based fully automatic diagonal loading and steering vector estimation. IEEE Access 5(99), 12974–12987 (2017)

    Article  Google Scholar 

  15. J. Li, P. Stoica, Z. Wang, On robust Capon beamforming and diagonal loading. IEEE Trans. Signal Process. 51(7), 1702–1715 (2003)

    Article  Google Scholar 

  16. J. Li, P. Stoica, Robust Adaptive Beamforming (Wiley, Hoboken, 2006)

    Google Scholar 

  17. J. Landon, B.D. Jeffs, K.F. Warnick, Model-based subspace projection beamforming for deep interference nulling. IEEE Trans. Signal Process. 60(3), 1215–1228 (2012)

    Article  MathSciNet  Google Scholar 

  18. L. Landweber, An iteration formula for Fredholm integral equations of the first kind. Am. J. Math. 73(3), 615–624 (1951)

    Article  MathSciNet  Google Scholar 

  19. R.G. Lorenz, S.P. Boyd, Robust minimum variance beamforming. IEEE Trans. Signal Process. 53(5), 1684–1696 (2005)

    Article  MathSciNet  Google Scholar 

  20. S. Mohammadzadeh, O. Kukrer, Modified robust capon beamforming with approximate orthogonal projection onto the signal-plus-interference subspace. Circuits Syst. Signal Process. 37(12), 5352–5368 (2018)

    Article  MathSciNet  Google Scholar 

  21. S. Mohammadzadeh, O. Kukrer, Robust adaptive beamforming with improved interferences suppression and a new steering vector estimation based on spatial power spectrum. Circuits Syst. Signal Process. 38(9), 4162–4179 (2019)

    Article  Google Scholar 

  22. D.A. Pados, G.N. Karystinos, An iterative algorithm for the computation of the MVDR filter. IEEE Trans. Signal Process. 49(2), 290–300 (2001)

    Article  Google Scholar 

  23. V. Pan, R. Schreiber, An improved Newton iteration for the generalized inverse of a matrix, with applications. SIAM J. Sci. Stat. Comput. 12(5), 1109–1130 (1991)

    Article  MathSciNet  Google Scholar 

  24. J. Qian, Z. He, T. Liu, N. Huang, Robust beamforming based on steering vector and covariance matrix estimation. Circuits Syst. Signal Process. 37(10), 4665–4682 (2018)

    Article  MathSciNet  Google Scholar 

  25. G. Schulz, Iterative Berechnung der reziproken matrix. Z. Angew. Math. Mech. 13(1), 57–59 (1933)

    Article  Google Scholar 

  26. J.F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11(1–4), 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  27. O. Scherzer, A modified Landweber iteration for solving parameter estimation problems. Appl. Math. Optim. 38(1), 45–68 (1998)

    Article  MathSciNet  Google Scholar 

  28. Y. Selén, R. Abrahamsson, P. Stoica, Automatic robust adaptive beamforming via ridge regression. Signal Process. 88(1), 33–49 (2008)

    Article  Google Scholar 

  29. H.L. Van Trees, Optimum Array Processing (Wiley, Hoboken, 2002), pp. 439–443

    Book  Google Scholar 

  30. S.A. Vorobyov, A.B. Gershman, Z.Q. Luo, Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem. IEEE Trans. Signal Process. 51(2), 313–324 (2003)

    Article  Google Scholar 

  31. J. Yang, X. Ma, C. Hou, Y. Liu, automatic generalized loading for robust adaptive beamforming. IEEE Signal Process. Lett. 16(3), 219–222 (2009)

    Article  Google Scholar 

  32. X. Yuan, L. Gan, Robust adaptive beamforming via a novel subspace method for interference covariance matrix reconstruction. Signal Process. 130, 233–242 (2017)

    Article  Google Scholar 

  33. C. Zhou, Y. Gu, S. He, Z. Shi, A robust and efficient algorithm for coprime array adaptive beamforming. IEEE Trans. Veh. Technol. 67(2), 1099–1112 (2018)

    Article  Google Scholar 

  34. C. Zhou, Z. Shi, Y. Gu, Coprime array adaptive beamforming with enhanced degrees-of-freedom capability, in 2017 IEEE Radar Conference (Seattle, WA, 2017), pp. 1357–1361

  35. M. Zhang, A. Zhang, Q. Yang, robust adaptive beamforming based on conjugate gradient algorithms. IEEE Trans. Signal Process. 64(22), 6046–6057 (2016)

    Article  MathSciNet  Google Scholar 

  36. Z. Zheng, K. Liu, W. Wang, Y. Yang, J. Yang, Robust adaptive beamforming against mutual coupling based on mutual coupling coefficients estimation. IEEE Trans. Veh. Technol. 66(10), 9124–9133 (2017)

    Article  Google Scholar 

  37. Z. Zheng, Y. Zheng, W. Wang, H. Zhang, Covariance matrix reconstruction with interference steering vector and power estimation for robust adaptive beamforming. IEEE Trans. Veh. Technol. 67(9), 8495–8503 (2018)

    Article  Google Scholar 

  38. Z. Zheng, T. Yang, W. Wang, H.C. So, Robust adaptive beamforming via simplified interference power estimation. IEEE Trans. Aerosp. Electron. Syst. (2019). https://doi.org/10.1109/TAES.2019.2899796

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Liu, W., Jin, M. et al. Parameter-Free Landweber Iteration Method for Robust Adaptive Beamforming. Circuits Syst Signal Process 39, 2716–2729 (2020). https://doi.org/10.1007/s00034-019-01270-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01270-3

Keywords

Navigation