Skip to main content
Log in

Majorana fermions induced Fano resonance and fast-to-slow light in a hybrid semiconductor/superconductor ring device

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We demonstrate theoretically the Fano resonance and the conversion from fast to slow light in a hybrid quantum dot (QD)–semiconductor/superconductor (S/S) ring device, where the QD is coupled to a pair of Majorana fermions (MFs) appearing in the hybrid QD–S/S ring device. The absorption spectra of the weak probe field can exhibit a series of asymmetric Fano line shapes, and their related optical propagation properties such as fast- and slow-light effects are investigated based on the hybrid system for suitable parametric regimes. The positions of the Fano resonances can be determined by the parameters, such as different detuning regimes and QD–MFs coupling strengths. Further, the transparency windows (i.e., the absorption dip approaches zero) in the probe absorption spectra are accompanied by the rapid steep dispersion of the Fano resonance profile, which promises the slow- or fast-light effect, and even tunable fast-to-slow light propagation (or vice versa) can be achieved by controlling different parameter regimes. Therefore, Fano resonance may indicate another means to investigate MFs and the investigation may open up promising applications in quantum information processing based on MFs in solid-state devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005)

    ADS  Google Scholar 

  2. Hau, L.V., Harris, S.E., Dutton, Z., Behroozi, C.H.: Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594 (1999)

    ADS  Google Scholar 

  3. Budker, D., Kimball, D.F., Rochester, S.M., Yashchuk, V.V.: Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation. Phys. Rev. Lett. 83, 1767 (1999)

    ADS  Google Scholar 

  4. Karigowda, A., Adwaith, K.V., Nayak, P.K., Sudha, S., Sanders, B.C., Bretenaker, F., Narayanan, A.: Phase-sensitive amplification of an optical field using microwaves. Opt. Express 27, 32111 (2019)

    ADS  Google Scholar 

  5. Liu, C., Dutton, Z., Behroozi, C.H., Hau, L.V.: Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490 (2001)

    ADS  Google Scholar 

  6. Harris, S.E., Field, J.E., Imamoglu, A.: Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64, 1107 (1990)

    ADS  Google Scholar 

  7. Shen, J.Q., He, S.: Dimension-sensitive optical responses of electromagnetically induced transparency vapor in a waveguide. Phys. Rev. A 74, 063831 (2006)

    ADS  Google Scholar 

  8. Shen, J.Q.: Electromagnetically-induced-transparency plasmonics: quantum-interference-assisted tunable surface-plasmon-polariton resonance and excitation. Phys. Rev. A 90, 023814 (2014)

    ADS  Google Scholar 

  9. Fano, U.: Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866 (1961)

    ADS  MATH  Google Scholar 

  10. Miroshnichenko, A.E., Flach, S., Kivshar, Y.S.: Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257 (2010)

    ADS  Google Scholar 

  11. Guo, J., Jiang, L., Jia, Y., Dai, X., Xiang, Y., Fan, D.: Low threshold optical bistability in one-dimensional gratings based on graphene plasmonics. Opt. Express 25, 5972 (2017)

    ADS  Google Scholar 

  12. Nojima, S., Usuki, M., Yawata, M., Nakahata, M.: Fano resonances for localized intrinsic defects in finite-sized photonic crystals. Phys. Rev. A 85, 063818 (2012)

    ADS  Google Scholar 

  13. Artar, A., Ahmet Ali, Y., Altug, H.: Directional double Fano resonances in plasmonic hetero-oligomers. Nano Lett. 11, 3694 (2011)

    ADS  Google Scholar 

  14. Lee, K.L., Wu, S.H., Lee, C.W., Wei, P.K.: Sensitive biosensors using Fano resonance in single gold nanoslit with periodic grooves. Opt. Express 19, 24530 (2011)

    ADS  Google Scholar 

  15. Zhou, Z.K., Peng, X.N., Yang, Z.J., Zhang, Z.S., Li, M., Su, X.R., Zhang, Q., Shan, X., Wang, Q.-Q., Zhang, Z.: Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission. Nano Lett. 11, 49 (2010)

    ADS  Google Scholar 

  16. Wu, C., Khanikaev, A.B., Shvets, G.: Broadband slow light metamaterial based on a double-continuum Fano resonance. Phys. Rev. Lett. 106, 107403 (2011)

    ADS  Google Scholar 

  17. Luk’yanchuk, B., Zheludev, N.I., Maier, S.A., Halas, N.J., Nordlander, P., Giessen, H., Chong, C.T.: The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707 (2010)

    ADS  Google Scholar 

  18. Giannini, V., Francescato, Y., Amrania, H., Phillips, C.C., Maier, S.A.: Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach. Nano Lett. 11, 2835 (2011)

    ADS  Google Scholar 

  19. Francescato, Y., Giannini, V., Maier, S.A.: Plasmonic systems unveiled by Fano resonances. ACS Nano 6, 1830 (2012)

    Google Scholar 

  20. Miroshnichenko, A.E., Kivshar, Y.S.: Fano resonances in all-dielectric oligomers. Nano Lett. 12, 6459 (2012)

    ADS  Google Scholar 

  21. Limonov, M.F., Rybin, M.V., Poddubny, A.N., Kivshar, Y.S.: Fano resonances in photonics. Nat. Photon. 11, 543 (2017)

    Google Scholar 

  22. Fedotov, V.A., Rose, M., Prosvirnin, S.L., Papasimakis, N., Zheludev, N.I.: Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys. Rev. Lett. 99, 147401 (2007)

    ADS  Google Scholar 

  23. Alicea, J.: New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012)

    ADS  Google Scholar 

  24. Mourik, V., Zuo, K., Frolov, S.M., Plissard, S.R., Bakkers, E.P., Kouwenhoven, L.P.: Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003 (2012)

    ADS  Google Scholar 

  25. Das, A., Ronen, Y., Most, Y., Oreg, Y., Heiblum, M., Shtrikman, H.: Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys. 8, 887 (2012)

    Google Scholar 

  26. Deng, M.T., Yu, C.L., Huang, G.Y., Larsson, M., Caroff, P., Xu, H.Q.: Anomalous zero-bias conductance peak in a Nb—InSb nanowire-Nb hybrid device. Nano Lett. 12, 6414 (2012)

    ADS  Google Scholar 

  27. Nadj-Perge, S., Drozdov, I.K., Li, J., Chen, H., Jeon, S., Seo, J., MacDonald, A.H., Bernevig, B.A., Yazdani, A.: Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602 (2014)

    ADS  Google Scholar 

  28. Chen, J., Yu, P., Stenger, J., Hocevar, M., Car, D., Plissard, S.R., Bakkers, E.P.A.M., Stanescu, T.D., Frolov, S.M.: Experimental phase diagram of zero-bias conductance peaks in superconductor/semiconductor nanowire devices. Sci. Adv. 3, e1701476 (2017)

    ADS  Google Scholar 

  29. Yin, J.X., Wu, Z., Wang, J.H., Ye, Z.Y., Gong, J., Hou, X.Y., Shan, L., Li, A., Liang, X.L., Wu, X.X., Li, J., Ting, C.S., Wang, Z.Q., Hu, J.P., Hor, P.H., Ding, H., Pan, S.H.: Observation of a robust zero-energy bound state in iron-based superconductor Fe (Te, Se). Nat. Phys. 11, 543 (2015)

    Google Scholar 

  30. Albrecht, S.M., Higginbotham, A.P., Madsen, M., Kuemmeth, F., Jespersen, T.S., Nygård, J., Krogstrup, P., Marcus, C.M.: Exponential protection of zero modes in Majorana islands. Nature 531, 206 (2016)

    ADS  Google Scholar 

  31. Sun, H.H., Zhang, K.W., Hu, L.H., Li, C., Wang, G.Y., Ma, H.Y., Xu, Z.A., Gao, C.L., Guan, D.D., Li, Y.Y., Liu, C., Qian, D., Zhou, Y., Fu, L., Li, S.C., Zhang, F.C., Jia, J.F.: Majorana zero mode detected with spin selective Andreev reflection in the vortex of a topological superconductor. Phys. Rev. Lett. 116, 257003 (2016)

    ADS  Google Scholar 

  32. He, Q.L., Pan, L., Stern, A.L., Burks, E.C., Che, X., Yin, G., Wang, J., Lian, B., Zhou, Q., Choi, E.S., Murata, K., Koul, X., Chen, Z., Nie, T., Shao, T.Q., Fan, Y., Zhang, S.C., Liu, K., Xia, J., Wang, K.L.: Chiral Majorana fermion modes in a quantum anomalous Hall insulator-superconductor structure. Science 357, 294 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Elliott, S.R., Franz, M.: Colloquium: Majorana fermions in nuclear, particle, and solid-state physics. Rev. Mod. Phys. 87, 137 (2015)

    ADS  MathSciNet  Google Scholar 

  34. Rokhinson, L.P., Liu, X., Furdyna, J.K.: The fractional ac Josephson effect in a semiconductor-superconductor nanowire as a signature of Majorana particles. Nat. Phys. 8, 795 (2012)

    Google Scholar 

  35. Jeon, S., Xie, Y., Li, J., Wang, Z., Bernevig, B.A., Yazdani, A.: Distinguishing a Majorana zero mode using spin-resolved measurements. Science 358, 772 (2017)

    ADS  Google Scholar 

  36. Urbaszek, B., Marie, X., Amand, T., Krebs, O., Voisin, P., Maletinsky, P., Högele, A., Imamoglu, A.: Nuclear spin physics in quantum dots: an optical investigation. Rev. Mod. Phys. 85, 79 (2013)

    ADS  Google Scholar 

  37. Liu, D.E., Baranger, H.U.: Detecting a Majorana-fermion zero mode using a quantum dot. Phys. Rev. B 84, 201308(R) (2011)

    ADS  Google Scholar 

  38. Flensberg, K.: Non-Abelian operations on Majorana fermions via single-charge control. Phys. Rev. Lett. 106, 090503 (2011)

    ADS  Google Scholar 

  39. Leijnse, M., Flensberg, K.: Scheme to measure Majorana fermion lifetimes using a quantum dot. Phys. Rev. B 84, 140501(R) (2011)

    ADS  Google Scholar 

  40. Pientka, F., Kells, G., Romito, A., Brouwer, P.W., von Oppen, F.: Enhanced zero-bias Majorana peak in the differential tunneling conductance of disordered multisubband quantum-wire/superconductor junctions. Phys. Rev. Lett. 109, 227006 (2012)

    ADS  Google Scholar 

  41. Sau, J.D., Sarma, S.D.: Realizing a robust practical Majorana chain in a quantum-dot-superconductor linear array. Nat. Commun. 3, 964 (2012)

    ADS  Google Scholar 

  42. Deng, M.T., Vaitiekėnas, S., Hansen, E.B., Danon, J., Leijnse, M., Flensberg, K., Nygård, J., Krogstrup, P., Marcus, C.M.: Majorana bound state in a coupled quantum-dot hybrid-nanowire system. Science 354, 1557 (2016)

    ADS  Google Scholar 

  43. Chen, H.J., Zhu, K.D.: Nonlinear optomechanical detection for Majorana fermions via a hybrid nanomechanical system. Nanoscale Res. Lett. 9, 166 (2014)

    ADS  Google Scholar 

  44. Chen, H.J., Fang, X.W., Chen, C.Z., Li, Y., Tang, X.D.: Robust signatures detection of Majorana fermions in superconducting iron chains. Sci. Rep. 6, 36600 (2016)

    ADS  Google Scholar 

  45. Chen, H.J., Wu, H.W.: Rabi splitting and optical Kerr nonlinearity of quantum dot mediated by Majorana fermions. Sci. Rep. 8, 17677 (2018)

    ADS  Google Scholar 

  46. Boyd, R.W.: Nonlinear Optics. Academic Press, Amsterdam (2008)

    Google Scholar 

  47. Zrenner, A., Beham, E., Stufler, S., Findeis, F., Bichler, M., Abstreiter, G.: Coherent properties of a two-level system based on a quantum-dot photodiode. Nature 418, 612 (2002)

    ADS  Google Scholar 

  48. Stufler, S., Ester, P., Zrenner, A., Bichler, M.: Quantum optical properties of a single \(\text{ In }_{{x}}\text{ Ga }_{1-x}\)As–GaAs quantum dot two-level system. Phys. Rev. B 72, 121301 (2005)

    ADS  Google Scholar 

  49. Ridolfo, A., Di Stefano, O., Fina, N., Saija, R., Savasta, S.: Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics. Phys. Rev. Lett. 105, 263601 (2010)

    ADS  Google Scholar 

  50. Walls, D.F., Milburn, G.J.: Quantum Optics, p. 245. Springer, New York (1994)

    MATH  Google Scholar 

  51. Agarwal, G.S., Huang, S.: Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81, 041803 (2010)

    ADS  Google Scholar 

  52. Harris, S.E., Field, J.E., Kasapi, A.: Dispersive properties of electromagnetically induced transparency. Phys. Rev. A 46, R29 (1992)

    ADS  Google Scholar 

  53. Bennink, R.S., Boyd, R.W., Stroud, C.R., Wong, V.: Enhanced self-action effects by electromagnetically induced transparency in the two-level atom. Phys. Rev. A 63, 033804 (2001)

    ADS  Google Scholar 

  54. Boyd, R.W., Gauthier, D.J.: Controlling the velocity of light pulses. Science 326, 1074 (2009)

    ADS  Google Scholar 

  55. Wilson-Rae, I., Zoller, P., Imamoḡlu, A.: Laser cooling of a nanomechanical resonator mode to its quantum ground state. Phys. Rev. Lett. 92, 075507 (2004)

    ADS  Google Scholar 

  56. Xu, X., Sun, B., Berman, P.R., Steel, D.G., Bracker, A.S., Gammon, D., Sham, L.J.: Coherent optical spectroscopy of a strongly driven quantum dot. Science 317, 929 (2007)

    ADS  Google Scholar 

  57. Nilsson, J., Akhmerov, A.R., Beenakker, C.W.J.: Splitting of a Cooper pair by a pair of Majorana bound states. Phys. Rev. Lett. 101, 120403 (2008)

    ADS  Google Scholar 

  58. Fu, L., Kane, C.L.: Probing neutral Majorana fermion edge modes with charge transport. Phys. Rev. Lett. 102, 216403 (2009)

    ADS  Google Scholar 

  59. Akhmerov, A.R., Nilsson, J., Beenakker, C.W.J.: Electrically detected interferometry of Majorana fermions in a topological insulator. Phys. Rev. Lett. 102, 216404 (2009)

    ADS  Google Scholar 

  60. Benjamin, C., Pachos, J.K.: Detecting Majorana bound states. Phys. Rev. B 81, 085101 (2010)

    ADS  Google Scholar 

Download references

Funding

Hua-Jun Chen is supported by the National Natural Science Foundation of China (Nos: 11647001 and 11804004) and Anhui Provincial Natural Science Foundation (No: 1708085QA11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Jun Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, HJ. Majorana fermions induced Fano resonance and fast-to-slow light in a hybrid semiconductor/superconductor ring device. Quantum Inf Process 19, 171 (2020). https://doi.org/10.1007/s11128-020-02659-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02659-9

Keywords

Navigation