Skip to main content
Log in

An alternative strategy to detect bacterial contamination in milk and water: a newly designed electrochemical biosensor

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The detection of acyl homoserine lactones (AHLs) can render their use as biomarkers and it may provide a chance to fight against food contamination and bacterial pathogens. For this purpose, in this study, an electrochemical biosensor was designed for the detection of AHLs to prevent harmful bacterial activities. The electrochemical biosensor was constructed by coating of zinc phthalocyanine bearing stabile TEMPO radical groups (TEMPO-ZnPc) on a glassy carbon electrode (GCE) and it was utilized for AHL detection. GCE/TEMPO–ZnPc electrode acted as amperometric biosensor for 3-oxo-C12-HSL, C10-HSL, C8-HSL, C6-HSL, and C4-HSL molecules, the sensor electrode only selectively sensed 3-oxo-C12-HSL molecule among the tested AHL molecules. The sensing measurements showed that 3-oxo-C12-HSL produced by Pseudomonas aeruginosa was detected between 2.32 × 10–6 and 39.9 × 10–6 mol dm−3 concentrations with 1.8 × 10–6 mol dm−3 limit of detection (LOD) in water. Additionally, the electrochemical biosensor was successfully applied for the detection of AHLs in milk samples. The sensing results indicated that GCE/TEMPO–ZnPc electrode can be used as rapid, sensitive, and selective biosensor for the detection of foodborne pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bajpai VK, Baek KH (2016) Biological efficacy and application of essential oils in foods-a review. J Essent Oil Bear Plants 19:1–19

    Article  CAS  Google Scholar 

  2. Scallan E, Hoekstra RM, Mahon BE, Jones TF, Griffin PM (2015) An assessment of the human health impact of seven leading foodborne pathogens in the United States using disability adjusted life years. Epidemiol Infect 143:2795–2804

    Article  CAS  PubMed  Google Scholar 

  3. Gutiérrez D, Rodríguez-Rubio L, Martínez B, Rodríguez A, García P (2016) Bacteriophages as weapons against bacterial biofilms in the food industry. Front Microbiol 7:825

    Article  PubMed  PubMed Central  Google Scholar 

  4. Scatamburlo T, Yamazi A, Cavicchioli V, Pieri F, Nero L (2015) Spoilage potential of Pseudomonas species isolated from goat milk. J Dairy Sci 98:759–764

    Article  CAS  PubMed  Google Scholar 

  5. Beaz-Hidalgo R, Figueras M (2013) Aeromonas spp. whole genomes and virulence factors implicated in fish disease. J Fish Dis 36:371–388

    Article  CAS  PubMed  Google Scholar 

  6. Davey ME, Caiazza NC, O'Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Khajanchi BK, Sha J, Kozlova EV, Erova TE, Suarez G, Sierra JC, Chopra AK (2009) N-acylhomoserine lactones involved in quorum sensing control the type VI secretion system, biofilm formation, protease production, and in vivo virulence in a clinical isolate of Aeromonas hydrophila. Microbiology 155:3518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wei JR, Tsai YH, Horng YT, Soo PC, Hsieh SC, Hsueh PR, Lai HC (2006) A mobile quorum-sensing system in Serratia marcescens. J Bacteriol 188:1518–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carlier A, Pessi G, Eberl L (2015) Microbial biofilms and quorum sensing. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer, Berlin, pp 45–52

    Google Scholar 

  10. Kumari A, Pasini P, Deo SK, Flomenhoft D, Shashidhar H, Daunert S (2006) Biosensing systems for the detection of bacterial quorum signaling molecules. Anal Chem 78:7603–7609

    Article  CAS  PubMed  Google Scholar 

  11. De Kievit TR, Iglewski BH (2000) Bacterial quorum sensing in pathogenic relationships. Infect Immun 68:4839–4849

    Article  PubMed  PubMed Central  Google Scholar 

  12. May AL, Eisenhauer ME, Coulston KS, Campagna SR (2012) Detection and quantitation of bacterial acylhomoserine lactone quorum sensing molecules via liquid chromatography—isotope dilution tandem mass spectrometry. Anal Chem 84:1243–1252

    Article  CAS  PubMed  Google Scholar 

  13. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  PubMed  Google Scholar 

  14. Churchill ME, Chen L (2010) Structural basis of acyl-homoserine lactone-dependent signaling. Chem Rev 111:68–85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Fletcher M, Cámara M, Barrett DA, Williams P (2014) Biosensors for qualitative and semiquantitative analysis of quorum sensing signal molecules Pseudomonas. Methods Protoc 1149:245–254

    CAS  Google Scholar 

  16. Yajima A (2014) Recent progress in the chemistry and chemical biology of microbial signaling molecules: quorum-sensing pheromones and microbial hormones. Tetrahedron Lett 55:2773–2780

    Article  CAS  Google Scholar 

  17. Chu W, Liu Y, Jiang Y, Zhu W, Zhuang X (2013) Production of N-acyl homoserine lactones and virulence factors of waterborne Aeromonas hydrophila. Indian J Microbiol 53:264–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Erickson DL, Endersby R, Kirkham A, Stuber K, Vollman DD, Rabin HR, Storey DG (2002) Pseudomonas aeruginosa quorum-sensing systems may control virulence factor expression in the lungs of patients with cystic fibrosis. Infect Immun 70:1783–1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morohoshi T, Shiono T, Takidouchi K, Kato M, Kato N, Kato J, Ikeda T (2007) Inhibition of quorum sensing in Serratia marcescens AS-1 by synthetic analogs of N-acylhomoserine lactone. Appl Environ Microbiol 73:6339–6344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Law JW, Ab Mutalib NS, Chan KG, Lee LH (2015) Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 5:770

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhao X, Lin CW, Wang J, Oh DH (2014) Advances in rapid detection methods for foodborne pathogens. Microbiol Biotechnol 24:297–312

    Article  CAS  Google Scholar 

  22. Mandal P, Biswas A, Choi K, Pal U (2011) Methods for rapid detection of foodborne pathogens: an overview. Am J Food Technol 6:87–102

    Article  Google Scholar 

  23. Naravaneni R, Jamil K (2005) Rapid detection of food-borne pathogens by using molecular techniques. J Med Microbiol 54:51–54

    Article  CAS  PubMed  Google Scholar 

  24. Pilolli R, Monaci L, Visconti A (2013) Advances in biosensor development based on integrating nanotechnology and applied to food-allergen management TrAC. Trends Anal Chem 47:12–26

    Article  CAS  Google Scholar 

  25. Struss A, Pasini P, Ensor CM, Raut N, Daunert S (2010) Paper strip whole cell biosensors: a portable test for the semiquantitative detection of bacterial quorum signaling molecules. Anal Chem 82:4457–4463

    Article  CAS  PubMed  Google Scholar 

  26. Mustafa F, Hassan RY, Andreescu S (2017) Multifunctional nanotechnology-enabled sensors for rapid capture and detection of pathogens. Sensors 17:2121

    Article  CAS  PubMed Central  Google Scholar 

  27. Wang Y, Duncan TV (2017) Nanoscale sensors for assuring the safety of food products. Curr Opin Biotechnol 44:74–86

    Article  CAS  PubMed  Google Scholar 

  28. Singh A, Poshtiban S, Evoy S (2013) Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors 13:1763–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baldrich E, Gómez R, Gabriel G, Muñoz FX (2011) Magnetic entrapment for fast, simple and reversible electrode modification with carbon nanotubes: application to dopamine detection. Biosens Bioelectron 26:1876–1882

    Article  CAS  PubMed  Google Scholar 

  30. Bard AJ, Faulkner LR (2001) Fundamentals and applications. In: Electrochemical methods. Wıley, pp 580–632

  31. Iqbal MA, Gupta S, Hussaini S (2012) A Review on electrochemical biosensors: principles and applications. Adv Biores 3:158–164

    CAS  Google Scholar 

  32. Kimmel DW, LeBlanc G, Meschievitz ME, Cliffel DE (2011) Electrochemical sensors and biosensors. Anal Chem 84:685–707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Jiang D, Liu Y, Jiang H, Rao S, Fang W, Wu M, Fang W (2018) A novel screen-printed mast cell-based electrochemical sensor for detecting spoilage bacterial quorum signaling molecules (N-acyl-homoserine-lactones) in freshwater fish. Biosens Bioelectron 102:396–402

    Article  CAS  PubMed  Google Scholar 

  34. Muniandy S, Teh SJ, Thong KL, Thiha A, Dinshaw IJ, Lai CW, Leo BF (2019) Carbon nanomaterial-based electrochemical biosensors for foodborne bacterial detection. Crit Rev Anal Chem 49:510–533

    Article  CAS  PubMed  Google Scholar 

  35. Korkut SE, Akyüz D, Özdoğan K, Yerli Y, Koca A, Şener MK (2016) TEMPO-functionalized zinc phthalocyanine: synthesis, magnetic properties, and its utility for electrochemical sensing of ascorbic acid. Dalton Trans 45:3086–3092

    Article  PubMed  CAS  Google Scholar 

  36. Ipek Y, Dincer H, Koca A (2014) Electrode modification based on “click electrochemistry” between terminal-alkynyl substituted cobalt phthalocyanine and 4-azidoaniline. Sens Actuators B Chem 193:830–837

    Article  CAS  Google Scholar 

  37. Janata J, Josowicz M (2003) Conducting polymers in electronic chemical sensors. Nat Mater 2:19

    Article  CAS  PubMed  Google Scholar 

  38. Tait JG, Worfolk BJ, Maloney SA, Hauger TC, Elias AL, Buriak JM, Harris KD (2013) Spray coated high-conductivity PEDOT: PSS transparent electrodes for stretchable and mechanically-robust organic solar cells. Sol Energy Mater Sol Cells 110:98–106

    Article  CAS  Google Scholar 

  39. Hou S, Kasner ML, Su S, Patel K, Cuellari R (2010) Highly sensitive and selective dopamine biosensor fabricated with silanized graphene. J Phys Chem C 114:14915–14921

    Article  CAS  Google Scholar 

  40. Jiang H, Jiang D, Shao J, Sun X (2016) Magnetic molecularly imprinted polymer nanoparticles based electrochemical sensor for the measurement of Gram-negative bacterial quorum signaling molecules (N-acyl-homoserine-lactones). Biosens Bioelectron 75:411–419

    Article  CAS  PubMed  Google Scholar 

  41. Yáñez-Sedeño P, Campuzano S, Pingarrón JM (2017) Electrochemical sensors based on magnetic molecularly imprinted polymers: a review. Anal Chim Acta 960:1–17

    Article  PubMed  CAS  Google Scholar 

  42. Baldrich E, Munoz FX, García-Aljaro C (2011) Electrochemical detection of quorum sensing signaling molecules by dual signal confirmation at microelectrode arrays. Anal Chem 83:2097–2103

    Article  CAS  PubMed  Google Scholar 

  43. Salmain M, Ghasemi M, Boujday S, Spadavecchia J, Técher C, Val F, Pradier CM (2011) Piezoelectric immunosensor for direct and rapid detection of Staphylococcal enterotoxin A (SEA) at the ng level. Biosens Bioelectron 29:140–144

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Marmara University BAPKO project with number FEN-C-YLP 250416-0186 and TÜBİTAK project with number 2210-C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Cenk Sesal.

Ethics declarations

Conflict of interest

N. Cenk Sesal, Atıf Koca, Ş. Maral Özcan, and M. Kasım Şener declare that they have no conflict of interest.

Compliance with Ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özcan, Ş.M., Sesal, N.C., Şener, M.K. et al. An alternative strategy to detect bacterial contamination in milk and water: a newly designed electrochemical biosensor. Eur Food Res Technol 246, 1317–1324 (2020). https://doi.org/10.1007/s00217-020-03491-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-020-03491-2

Keywords

Navigation