Skip to main content

Advertisement

Log in

Modeling-Learning-Based Actor-Critic Algorithm with Gaussian Process Approximator

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

The tasks with continuous state and action spaces are difficult to be solved with high sample efficiency. Model learning and planning, as a well-known method to improve the sample efficiency, is achieved by learning a system dynamics model first and then using it for planning. However, the convergence of the algorithm will be slowed if the system dynamics model is not captured accurately, with the consequence of low sample efficiency. Therefore, to solve the problems with continuous state and action spaces, a model-learning-based actor-critic algorithm with the Gaussian process approximator is proposed, named MLAC-GPA, where the Gaussian process is selected as the modeling method due to its valuable characteristics of capturing the noise and uncertainty of the underlying system. The model in MLAC-GPA is firstly represented by linear function approximation and then modeled by the Gaussian process. Afterward, the expectation value vector and the covariance matrix of the model parameter are estimated by Bayesian reasoning. The model is used for planning after being learned, to accelerate the convergence of the value function and the policy. Experimentally, the proposed method MLAC-GPA is implemented and compared with five representative methods in three classic benchmarks, Pole Balancing, Inverted Pendulum, and Mountain Car. The result shows MLAC-GPA overcomes the others both in learning rate and sample efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Littman, M.L.: Reinforcement learning improves behaviour from evaluative feedback. Nature 521 (7553), 445–451 (2015)

    Article  Google Scholar 

  2. Kiumarsi, B., Vamvoudakis, K.G., Modares, H., Lewis, F.L.: Optimal and autonomous control using reinforcement learning: A survey. IEEE Trans. Neural Netw. Learn. Syst., 1–21 (2017)

  3. Racanière, S., Weber, T., Reichert, D.P., Buesing, L., Guez, A., Rezende, D., Jimenez, A., Badia, P., Vinyals, O., Heess, N., Li, Y., Pascanu, R., Battaglia, P., Hassabis, D., Silver, D., Wierstra, D.: Imagination-augmented agents for deep reinforcement learning. In: Advances in Neural Information Processing Systems (NIPS), pp. 5694–5705 (2017)

  4. Bellemare, M.G., Ostrovski, G., Guez, A., Thomas, P.S., Munos, R.: Increasing the action gap: New operators for reinforcement learning. In: Proceedings of Workshops at the AAAI Conference on Artificial Intelligence (AAAI), pp 1476–1483 (2016)

  5. Lample, G., Chaplot, D.S.: Playing fps games with deep reinforcement learning. In: Proceedings of Workshops at the AAAI Conference on Artificial Intelligence (AAAI), pp 2140–2146 (2017)

  6. Hwangbo, J., Sa, I., Siegwart, R., Hutter, M.: Control of a quadrotor with reinforcement learning. IEEE Robot. Autom. Lett. 2(4), 2096–2103 (2017)

    Article  Google Scholar 

  7. Nawrocki, P., Sniezynski, B.: Autonomous context-based service optimization in mobile cloud computing. J. Grid Comput. 15(3), 343–356 (2017)

    Article  Google Scholar 

  8. Qureshi, M.B., Dehnavi, M.M., Min-Allah, N., Qureshi, M.S., Hussain, H., Rentifis, I., Tziritas, N., Loukopoulos, T., Khan, S.U., Xu, C.Z.: Survey on grid resource allocation mechanisms. J. Grid Comput. 12(2), 399–441 (2014)

    Article  Google Scholar 

  9. Galstyan, A., Czajkowski, K., Lerman, K.: Resource allocation in the grid with learning agents. J. Grid Comput. 3(1–2), 91–100 (2005)

    Article  Google Scholar 

  10. Cichosz, P., Mulawka, J.J.: Fast and efficient reinforcement lcearning with truncated temporal differences. In: Machine Learning Proceedings 1995, pp 99–107. Elsevier (1995)

  11. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press (1998)

  12. Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press (2014)

  13. Wei, Q., Liu, D., Lewis, F.L., Liu, Y., Zhang, J.: Mixed iterative adaptive dynamic programming for optimal battery energy control in smart residential microgrids. IEEE Trans. Ind. Electron. 64(5), 4110–4120 (2017)

    Article  Google Scholar 

  14. Cohen, E., Beck, J.C.: Problem difficulty and the phase transition in heuristic search. In: Proceedings of Workshops at the AAAI Conference on Artificial Intelligence (AAAI), pp 780–786 (2017)

  15. Goldenberg, M.: The heuristic search research framework. Knowl.-Based Syst. 129, 1–3 (2017)

    Article  Google Scholar 

  16. Gu, S., Lillicrap, T., Sutskever, I., Levine, S.: Continuous deep q-learning with model-based acceleration. In: International Conference on Machine Learning (ICML), pp 2829–2838 (2016)

  17. Jiang, Y, Deng, Z., Chung, F.-L., Wang, G., Qian, P., Choi, K.-S., Wang, S.: Recognition of epileptic eeg signals using a novel multi-view tsk fuzzy system. IEEE Trans. Fuzzy Syst. 25 (1), 3–20 (2017)

    Article  Google Scholar 

  18. Kaijian, X., Gu, X., Zhang, Y.: Oriented grouping constrained spectral clustering for medical imaging segmentation. Multimedia Systems

  19. Rasmussen, C.E.: Gaussian processes in machine learning. In: Advanced Lectures on Machine Learning, pp 63–71. Springer (2004)

  20. Peng, W., Li, Y., Yang, Y., Mi, J., Huang, H.: Bayesian degradation analysis with inverse gaussian process models under cime-varying degradation rates. IEEE Trans. Reliab. 66(1), 84–96 (2017)

    Article  Google Scholar 

  21. You, J., Li, X., Low, M., Lobell, D., Ermon, S.: Deep gaussian process for crop yield prediction based on remote sensing data. In: Proceedings of Workshops at the AAAI Conference on Artificial Intelligence (AAAI), pp 4559–4566 (2017)

  22. Munos, R., Stepleton, T., Harutyunyan, A., Bellemare, M.: Safe and efficient off-policy reinforcement learning. In: Advances in Neural Information Processing Systems(NIPS), pp 1054–1062 (2016)

  23. Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuoglu, K., de Freitas, N.: Sample efficient actor-critic with experience replay. In: International Conference on Learning Representations (ICLR) (2017)

  24. Gu, S.X., Lillicrap, T., Ghahramani, Z., Turner, R.E., Schölkopf, B., Levine, S.: Interpolated policy gradient: Merging on-policy and off-policy gradient estimation for deep reinforcement learning. In: Advances in Neural Information Processing Systems (NIPS), pp 3846–3855 (2017)

  25. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. International Conference on Machine Learning (ICML)

  26. Levine, S., Koltun, V.: Guided policy search. In: International conference on machine learning (ICML), pp. 1–9 (2013)

  27. Levine, S., Abbeel, P.: Learning neural network policies with guided policy search under unknown dynamics. In: Advances in Neural Information Processing Systems (NIPS), pp. 1071–1079 (2014)

  28. Sutton, R.S.: Integrated architectures for learning, planning, and reacting based on approximating dynamic programming. In: Machine Learning Proceedings 1990, pp 216–224. Elsevier (1990)

  29. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)

    MATH  Google Scholar 

  30. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-learning. In: Proceedings of Workshops at the AAAI Conference on Artificial Intelligence (AAAI), vol. 16, pp 2094–2100 (2016)

  31. Peng, J., Williams, R.J.: Efficient learning and planning within the dyna framework. Adapt. Behav. 1(4), 437–454 (1993)

    Article  Google Scholar 

  32. Moore, A.W., Atkeson, C.G.: Prioritized sweeping: Reinforcement learning with less data and less time. Mach. Learn. 13(1), 103–130 (1993)

    Google Scholar 

  33. Ko, J., Klein, D.J., Fox, D., Haehnel, D.: Gaussian processes and reinforcement learning for identification and control of an autonomous blimp. In: 2007 IEEE International Conference on Robotics and Automation, pp 742–747. IEEE (2007)

  34. Wang, J.M., Fleet, D.J., Hertzmann, A.: Gaussian process dynamical models for human motion. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 283–298 (2008)

    Article  Google Scholar 

  35. Santos, M., López, V., Botella, G., et al.: Dyna-h: A heuristic planning reinforcement learning algorithm applied to role-playing game strategy decision systems. Knowl.-Based Syst. 32, 28–36 (2012)

    Article  Google Scholar 

  36. Zhou, Y., Liu, Q., Fu, Q., Zhang, Z.: Trajectory sampling value iteration: Improved dyna search for mdps. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, pp 1685–1686. International Foundation for Autonomous Agents and Multiagent Systems (2015)

  37. Sutton, R.S., Szepesvári, C., Geramifard, A., Bowling, M.P.: Dyna-style planning with linear function approximation and prioritized sweeping. arXiv:https://arxiv.org/abs/1206.3285

  38. Grondman, I., Vaandrager, M., Busoniu, L., Babuska, R., Schuitema, E.: Efficient model learning methods for actor–critic control. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(3), 591–602 (2012)

    Article  Google Scholar 

  39. Busoniu, L., B, R, Schutter, B.D., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC Press (2010)

  40. Choi, J.-S., Kim, M.: Single image super-resolution using global regression based on multiple local linear mappings. IEEE Trans. Image Process. 26(3), 1300–1314 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Nassif, R., Richard, C., Ferrari, A., Sayed, A.H.: Diffusion lms for multitask problems with local linear equality constraints. IEEE Trans. Signal Process. 65(19), 4979–4993 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Grondman, I., Buşoniu, L., Babuska, R.: Model learning actor-critic algorithms: Performance evaluation in a motion control task. In: 2012 IEEE 51st Annual Conference on Decision and Control (CDC), pp 5272–5277. IEEE (2012)

  43. Costa, B., Caarls, W., Menasché, D.S.: Dyna-mlac: trading computational and sample complexities in actor-critic reinforcement learning. In: 2015 Brazilian Conference on Intelligent Systems (BRACIS), pp 37–42. IEEE (2015)

  44. Boyan, J.A.: Least-squares temporal difference learning. In: ICML, pp 49–56 (1999)

  45. Tagorti, M., Scherrer, B.: On the rate of convergence and error bounds for lstd (λ). In: International Conference on Machine Learning, pp 1521–1529 (2015)

  46. Cheng, Y., Feng, H., Wang, X.: Efficient data use in incremental actor–critic algorithms. Neurocomputing 116, 346–354 (2013)

    Article  Google Scholar 

  47. Tamar, A., Wu, Y., Thomas, G., Levine, S., Abbeel, P.: Value iteration networks. In: Advances in Neural Information Processing Systems (NIPS), pp 2154–2162 (2016)

  48. Zhou, J., Yu, P., Tang, W., Wu, Y.: Efficient online local metric adaptation via negative samples for person re-identification, pp 2439–2447 (2017)

  49. Engel, Y., Mannor, S., Meir, R.: Learning to control an octopus arm with gaussian process temporal difference methods. In: Bayesian Reinforcement Learning with Gaussian Process Temporal Difference Methods, pp 1–46 (2007)

  50. Zhong, S., Liu, Q., Zhang, Z., Fu, Q.: Efficient reinforcement learning in continuous state and action spaces with dyna and policy approximation. Frontiers of Computer Science, 1–21 (2019)

Download references

Acknowledgments

This paper is supported by National Natural Science Foundation of China (61702055, U1764261, 51705021, 61972059, 61773272), Natural Science Foundation of Jiangsu (BK2012616), Science technology program of Jiangsu (BK2015260), High School Natural Foundation of Jiangsu(13KJB520020), Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University (93K172014K04, 93K172017K18), Suzhou Industrial application of basic research program part (SYG201422, SYG201308).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shan Zhong or Xuemei Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Recursive inference of the model parameter

Appendix: Recursive inference of the model parameter

Recall the expression of the parameter posterior: \({\hat {\beta _{t}}} = {\Phi }_{t} Q_{t}{\boldsymbol {x}_{t + 1}}\), \({\hat {\mathbf {P}}_{t}} = {\textbf {I}} - {\Phi }_{t} \boldsymbol {Q}_{t} {\Phi }_{t}^{T}, \boldsymbol {Q}_{t} = {\left ({{\mathbf {\Phi }}_t^T{{\mathbf {\Phi }}_t} + {\Sigma _t}} \right )^{- 1}}\)

The matrices Φt, Σt and \(Q_t^{- 1}\) can be written recursively as follows:

$$ {{\mathbf{\Phi }}_{t}} = [{{\mathbf{\Phi }}_{t - 1}}, {\phi_{t}}], $$
(1)
$$ {\boldsymbol {\Sigma}_{t}} = \left[ \begin{array}{l} {\boldsymbol {\Sigma}_{t - 1}} ,0\\ 0 ,{\sigma_{t}^{2}} \end{array} \right]. $$
(2)
$$ \boldsymbol Q_{t}^{- 1} = \left[ \begin{array}{l} \boldsymbol Q_{t - 1}^{- 1} ,{\mathbf{\Phi }}_{t}^{T}{\boldsymbol \phi_{t}}\\ \phi_{t}^{T}{\mathbf{\Phi }}_{t}^{} ,\phi_{t}^{T}\boldsymbol \phi + {\sigma_{t}^{2}} \end{array} \right]. $$
(3)

By using the matrix formula, the inversion of \(\boldsymbol Q_t^{- 1}\) can be represented as

$$ {\boldsymbol Q_{t}} = \frac{1}{{{s_{t}}}}\left[ \begin{array}{l} {s_{t}}\boldsymbol Q_{t - 1}^{} + {\boldsymbol g_{t}}\boldsymbol g_{t}^{T} , - {\boldsymbol g_{t}}\\ - \boldsymbol g_{t}^{T} \quad ,\textbf{{I}} \end{array} \right], $$
(4)

where

$$ {\boldsymbol g_{t}} = \boldsymbol Q_{t - 1}^{}\boldsymbol {\Phi}_{t - 1}^{T}{\boldsymbol \phi_{t}}. $$
(5)
$$ {s_{t}} = {\sigma_{t}^{2}} + \boldsymbol \phi_{t}^{T}\boldsymbol \phi_{t}^{} - {(\boldsymbol {\Phi}_{t - 1}^{T}}{\boldsymbol \phi_{t}})^{T}{\boldsymbol g_{t}}. $$
(6)

The expression of \({\hat \upbeta _t}\) can be represented as

$$ \begin{array}{l} {{\hat \upbeta} }_{t} = {{\mathbf{\Phi }}_{t}}{\boldsymbol Q_{t}}{\boldsymbol x_{t + 1}}\\ = \frac{1}{{{s_{t}}}}\left[ {\boldsymbol {\Phi}_{t - 1}^{},{\boldsymbol \phi_{t}}} \right]\left[ \begin{array}{l} {s_{t}}{\boldsymbol Q_{t - 1}} + {\boldsymbol g_{t}}g_{t}^{T} - {\boldsymbol g_{t}}\\ - \boldsymbol g_{t}^{T} 1 \end{array} \right]\left( \begin{array}{l} {\boldsymbol x_{t}}\\ {x_{t + 1}} \end{array} \right)\\ = \boldsymbol {\Phi}_{t - 1}^{}{\boldsymbol Q_{t - 1}}{x_{t}} + \frac{1}{{{s_{t}}}}\left[ {\boldsymbol {\Phi}_{t - 1}^{},{\boldsymbol \phi_{t}}} \right]\left( \begin{array}{l} {g_{t}}\\ - 1 \end{array} \right)\left( {\boldsymbol g_{t}^{T}}, - 1 \right)\left( \begin{array}{l} {\boldsymbol x_{t}}\\ {x_{t + 1}} \end{array} \right)\\ = {{\boldsymbol{\hat \upbeta} }_{t - 1}} + \frac{1}{{{s_{t}}}}(\boldsymbol {\Phi}_{t - 1}^{}{\boldsymbol g_{t}} - {\boldsymbol \phi_{t}})(\boldsymbol g_{t}^{T}{\boldsymbol x_{t}} - {x_{t + 1}})\\ = {{{\hat \upbeta} }_{t - 1}} + \frac{{{\boldsymbol p_{t}}}}{{{s_{t}}}}{d_{t}}, \end{array} $$
(7)

where \({d_t} = {x_{t + 1}} - \boldsymbol g_t^{T}{\boldsymbol x_t}\) and \({\boldsymbol p_t} = {\boldsymbol \phi _t} - \boldsymbol {\Phi }_{t - 1}^{}{\boldsymbol g_t}\)

Next, the simple computaion for dt, pt and st will be derived. Let us begin with dt:

$$ \begin{array}{l} {d_{t}} = {x_{t + 1}} - g_{t}^{T}{x_{t}}\\ = {x_{t + 1}} - \phi_{t}^{T}{\Phi}_{t - 1}^{}Q_{t - 1}^{}{x_{t}}\\ = {x_{t + 1}} - \boldsymbol \phi_{t}^{T}{{\hat \upbeta} }_{t - 1}. \end{array} $$
(8)
$$ \begin{array}{l} {p_{t}} = {\boldsymbol \phi_{t}} - {\Phi}_{t - 1}^{}{\boldsymbol g_{t}}\\ = {\phi_{t}} - {\Phi}_{t - 1}^{}Q_{t - 1}^{}{\Phi}_{t - 1}^{T}{\phi_{t}}\\ = (\textbf{I} - \boldsymbol {\Phi}_{t - 1}^{}Q_{t - 1}^{}{\Phi}_{t - 1}^{T}){\boldsymbol \phi_{t}}\\ = {\boldsymbol P_{t - 1}}{\boldsymbol \phi_{t}}. \end{array} $$
(9)
$$ \begin{array}{l} s_{t} = {\sigma_{t}^{2}} + \boldsymbol \phi_{t}^{T}\boldsymbol \phi_{t}^{} - {(\boldsymbol {\Phi}_{t - 1}^{T}}{\boldsymbol \phi_{t}})^{T}\boldsymbol Q_{t - 1}^{}\boldsymbol {\Phi}_{t - 1}^{T}{\boldsymbol \phi_{t}}\\ = {\sigma_{t}^{2}} + \boldsymbol \phi_{t}^{T}\boldsymbol \phi_{t}^{} - \boldsymbol \phi_{t}^{T}(I - {\boldsymbol P_{t - 1}}){\boldsymbol \phi_{t}}\\ = {\sigma_{t}^{2}} + \phi_{t}^{T}{\boldsymbol P_{t - 1}}{\boldsymbol \phi_{t}}\\ = {\sigma_{t}^{2}} + \boldsymbol \phi_{t}^{T}{\boldsymbol p_{t}}. \end{array} $$
(10)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, S., Tan, J., Dong, H. et al. Modeling-Learning-Based Actor-Critic Algorithm with Gaussian Process Approximator. J Grid Computing 18, 181–195 (2020). https://doi.org/10.1007/s10723-020-09512-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10723-020-09512-4

Keywords

Navigation