Skip to main content
Log in

Parameter sensitivity analysis of a two-dimensional cryo-hydrogeological numerical model of degrading permafrost near Umiujaq (Nunavik, Canada)

Analyse de sensibilité de paramètres d’un modèle numérique cryo-hydrogéologique en deux dimensions de la dégradation du pergélisol près de Umiujaq (Nunavik, Canada)

Análisis de sensibilidad de parámetros de un modelo numérico criohidrogeológico bidimensional de degradación del permafrost cerca de Umiujaq (Nunavik, Canadá)

Umiujaq(加拿大努纳维克)附近退化型多年冻土的二维低温 - 水文地质数值模型的参数敏感性分析

Análise de sensibilidade de parâmetros de um modelo numérico crio-hidrogeológico bidimensional de degradação do pergelissolo próximo a Umiujaq (Nunavik, Canadá)

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A calibrated field-scale numerical model of groundwater flow and permafrost degradation has been used in a sensitivity analysis of permafrost thaw on thermal and hydraulic parameters. The two-dimensional cryo-hydrogeological model was developed using the HEATFLOW-SMOKER code applied to the Umiujaq field site in Nunavik, Quebec, Canada, and includes coupled groundwater flow and advective–conductive heat transport with latent-heat and temperature-dependent thermal and hydraulic properties. Model sensitivity was evaluated by using the PEST code to systematically vary selected thermal and hydraulic parameters, and was quantified with respect to three system output variables or ‘targets’: subsurface temperature, groundwater velocity and ground-surface heat flux. PEST-derived model sensitivities were similar for all targets which contained subsurface temperature profiles, while sensitivities were slightly higher when only summer conditions were considered as the target compared to a full year of data. This trend was attributed to greater heat exchange at the ground surface during the summer months, leading to a more active groundwater flow system and greater feedback to the thermal regime. For all targets, the hydraulic and thermal parameters of the shallow layers (fine sand and marine silt, respectively) as well as the parameters defining the ground-surface heat exchange layer, were more sensitive compared to the deeper layers (coarse sand and gravel, and unfractured bedrock). Sensitivities were also among the highest for the ground-surface heat flux target. High model sensitivity to these parameters highlights the importance of detailed site characterization in the near-surface zone for more realistic simulations of permafrost dynamics.

Résumé

Un modèle numérique calibré à l’échelle du terrain de l’écoulement des eaux souterraines et de la dégradation du pergélisol a été utilisé dans une analyse de sensibilité des paramètres thermiques et hydrauliques vis-à-vis du dégel du pergélisol. Le modèle cryo-hydrogéologique bidimensionnel a été développé en utilisant le code HEATFLOW-SMOKER, et appliqué au site de Umiujaq à Nunavik, Québec, Canada, et intègre le couplage des écoulements d’eaux souterraines et le transport thermique diffusif et par advection avec la chaleur latente et les propriétés thermales dépendantes de la température et les propriétés hydrauliques. La sensibilité du modèle a été évaluée en utilisant le code PEST pour faire varier de manière systématique les paramètres thermiques et hydrauliques sélectionnées, et a été quantifiée en ce qui concerne trois variables de sortie ou ‘cibles’: la température du sous-sol, la vitesse des eaux souterraines et le flux thermique souterrain. Les sensibilités dérivées du modèle PEST étaient semblables pour toutes les cibles qui contenaient des profils de température de subsurface, tandis que les sensibilités étaient légèrement plus élevées lorsque seules les conditions estivales étaient considérées comme cible par rapport à une année complète de données. Cette tendance a été attribuée à un plus grand échange de chaleur à la surface du sol pendant les mois d’été, avec pour conséquence un système d’écoulement des eaux souterraines plus actif et une plus grande rétroaction au régime thermique. Pour toutes les cibles, les paramètres hydrauliques et thermiques des couches peu profondes (sables fins et limons marins, respectivement) ainsi que les paramètres définissant la couche d’échange de chaleur entre sous-sol et surface, étaient plus sensibles en comparaison avec les couches plus profondes (sable grossier et gravier, et socle non fracturé). Les sensibilités étaient aussi parmi les plus élevées pour la cible du flux thermique entre le sous-sol et la surface. Une sensibilité élevée de ces paramètres au modèle souligne l’importance d’une caractérisation détaillée du site dans la zone proche de la surface pour des simulations plus réalistes de la dynamique du pergélisol.

Resumen

Se ha utilizado un modelo numérico calibrado a escala de campo del flujo de agua subterránea y de degradación del permafrost en un análisis de sensibilidad del deshielo del permafrost de los parámetros térmicos e hidráulicos. El modelo criohidrogeológico bidimensional se desarrolló utilizando el código HEATFLOW-SMOKER aplicado al yacimiento de Umiujaq en Nunavik, Quebec, Canadá, e incluye el acoplamiento del flujo de agua subterránea y del transporte de calor advectivo-conductivo con propiedades térmicas e hidráulicas latentes y dependientes de la temperatura. La sensibilidad del modelo se evaluó utilizando el código PEST para variar sistemáticamente los parámetros térmicos e hidráulicos seleccionados, y se cuantificó con respecto a tres variables de salida del sistema o “objetivos”: temperatura subterránea, velocidad del agua subterránea y flujo de calor tierra-superficie. Las sensibilidades de los modelos derivados de PEST fueron similares para todos los objetivos que contenían perfiles de temperatura del subsuelo, mientras que las sensibilidades fueron ligeramente superiores cuando sólo se consideraron como objetivo las condiciones de verano, en comparación con un año completo de datos. Esta tendencia se atribuyó a un mayor intercambio de calor en la superficie del suelo durante los meses de verano, lo que condujo a un sistema de flujo de agua subterránea más activo y a una mayor retroalimentación al régimen térmico. Para todos los objetivos, los parámetros hidráulicos y térmicos de las capas poco profundas (arena fina y limo marino, respectivamente), así como los parámetros que definen la capa de intercambio de calor entre el suelo y la superficie, fueron más sensibles en comparación con las capas más profundas (arena gruesa y grava, y basamento no fracturado). Las sensibilidades también estaban entre las más altas para el objetivo de flujo de calor de la superficie del suelo. La alta sensibilidad del modelo a estos parámetros resalta la importancia de la caracterización detallada del sitio en la zona cercana a la superficie para simulaciones más realistas de la dinámica del permafrost.

摘要

校准的地下水流和多年冻土退化的场地尺度数值模型已被用于多年冻土融化对热和水力参数的敏感性分析。二维低温水文地质模型是采用HEATFLOW-SMOKER代码开发的, 该代码应用于加拿大魁北克省努纳维克的Umiujaq场地, 并包括耦合的地下水流和具有潜热和温度相关的热和水力特性的对流传导热传输。通过使用PEST代码系统地改变所选择的热和水力参数来评估模型灵敏度, 并使用三个系统输出变量或“目标”(地下温度, 地下水流速和地表热通量)来量化模型灵敏度。PEST估算的模型灵敏度对于包含地下温度分布的所有目标是相似的, 而当仅将夏季条件视为与全年数据相比的目标时, 灵敏度略高。这一趋势是因为夏季的地表热交换量增加, 导致地下水流动系统更加活跃, 对热系统的反馈更大。对于所有参数目标, 浅层(细砂和海洋淤泥)的水力和热力参数以及定义地表热交换层的参数与深层(粗砂, 砾石和没有破裂的基岩)相比更敏感。地表热通量目标的灵敏度也是最高的。模型对这些参数的高敏感性表明了近地表区域详细场地表征的重要性, 以便更真实地模拟永久冻土动力过程。

Resumo

Um modelo numérico calibrado em escala de campo do fluxo de águas subterrâneas e da degradação do pergelissolo foi usado em uma análise de sensibilidade de degelo do pergelissolo nos parâmetros térmicos e hidráulicos. O modelo crio-hidrogeológico bidimensional foi desenvolvido usando o código HEATFLOW-SMOKER aplicado em uma área de Umiujaq em Nunavik, Quebec, Canadá, e inclui o acoplamento do fluxo de águas subterrâneas e transporte de calor por advecção-condução com calor latente e propriedades térmicas e hidráulicas dependentes da temperatura. A sensibilidade do modelo foi avaliada usando o código PEST para variar sistematicamente os parâmetros térmicos e hidráulicos selecionados, e foi quantificada em relação a três variáveis de saída do sistema, ou “alvos”: temperatura da subsuperfície, velocidade da água subterrânea e fluxo de calor da superfície do solo. As sensibilidades do modelo derivadas do PEST foram semelhantes para todos os alvos que continham perfis de temperatura de subsuperfície, enquanto as sensibilidades foram levemente mais elevadas quando apenas as condições de verão foram consideradas como alvo, em comparação com um ano completo de dados. Essa tendência foi atribuída a uma maior troca de calor na superfície do solo durante os meses de verão, levando a um sistema de fluxo de águas subterrâneas mais ativo e a um maior retorno ao regime térmico. Para todos os alvos, os parâmetros hidráulicos e térmicos das camadas rasas (areia fina e silte marinho, respectivamente), assim como os parâmetros que definem a camada de troca de calor na superfície do solo, foram mais sensíveis em comparação às camadas mais profundas (areia grossa e cascalho, e embasamento não fraturado). As sensibilidades também estavam entre as mais elevadas para o fluxo de calor na superfície do solo como alvo. A alta sensibilidade do modelo a esses parâmetros destaca a importância da caracterização detalhada na zona próxima à superfície para simulações mais realistas da dinâmica do pergelissolo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albers BMC (2018) Parameter Sensitivity Analysis of a 2D Cryo-hydrogeological Numerical Model of Degrading Permafrost at Umiujaq, Quebec, Canada. MSc Thesis, Wageningen University and Research, Wageningen, The Netherlands

  • Allard M, Lemay M (2012) Nunavik and Nunatsiavut: from science to policy—an integrated regional impact study (IRIS) of climate change and modernization. ArcticNet, Quebec City, QC, 303 pp

  • Allard M, Seguin MK (1987) The Holocene evolution of permafrost near the tree line, on the eastern coast of Hudson Bay (northern Quebec). Can J Earth Sci 24(11):2206–2222

    Article  Google Scholar 

  • Allard M, Wang B, Pilon JA (1995) Recent cooling along the southern shore of Hudson Strait, Quebec, Canada, documented from permafrost temperature measurements. Arct Alp Res 27(2):157–166

    Article  Google Scholar 

  • Bahremand A, de Smedt F (2008) Distributed hydrological modeling and sensitivity analysis in Torysa watershed, Slovakia. Water Resour Manag 22(3):393–408. https://doi.org/10.1007/s11269-007-9168-x

    Article  Google Scholar 

  • Beck I, Ludwig R, Bernier M, Lévesque E, Boike J (2015) Assessing permafrost degradation and land cover changes (1986–2009) using remote sensing data over Umiujaq, sub-Arctic Québec. Permafr Periglac Process 26(2):129–141. https://doi.org/10.1002/ppp.1839

    Article  Google Scholar 

  • Bense VF, Kooi H, Ferguson G, Read T (2012) Permafrost degradation as a control on hydrogeological regime shifts in a warming climate. J Geophys Res Earth Surf 117(F03036). https://doi.org/10.1029/2011JF002143

  • Bush E, Lemmen DS (eds) (2019) Canada’s changing climate report. Government of Canada, Ottawa, ON, 444 pp

  • Buteau S, Fortier R, Delisle G, Allard M (2004) Numerical simulation of the impacts of climate warming on a permafrost mound. Permafr Periglac Process 15(1):41–57. https://doi.org/10.1002/ppp.474

    Article  Google Scholar 

  • Dagenais S (2018) Coupled Cryo-hydrogeological modelling of permafrost dynamics at Umiujaq, Québec, Canada, MSc Thesis, Université Laval, Quebec City, QC, Canada

  • Dagenais S, Molson J, Lemieux J-M, Fortier R, Therrien R (2020) Coupled cryo-hydrogeological modelling of permafrost dynamics near Umiujaq (Nunavik, Canada). Hydrogeol J. https://doi.org/10.1007/s10040-020-02111-3

  • Doherty J (2015) Calibration and uncertainty analysis for complex environmental models. Watermark, Brisbane, Australia

  • Doherty J (2018) Model-independent parameter estimation user manual, part I: PEST, SENSAN and global optimisers. Watermark, Brisbane, Australia, 393 pp

  • Fortier R, LeBlanc AM, Yu W (2011) Impacts of permafrost degradation on a road embankment at Umiujaq in Nunavik (Quebec), Canada. Can Geotech J 48(5):720–740. https://doi.org/10.1139/T10-101

    Article  Google Scholar 

  • Fortier R, Lemieux J-M, Therrien R, Molson J (2013) Campagne de forages pour l’installation de puits d’observation des eaux souterraines dans un petit bassin versant pergélisolé à Umiujaq. Rapport de la phase III du projet de déploiement du réseau Immatsiak remis au MDDEFP [Drilling campaign for the installation of groundwater observation wells in a small permafrost watershed in Umiujaq. Phase III report of the Immatsiak network deployment project submitted to the MDDEFP]. MDDEFP, Quebec City, QC, 89 pp

  • Fortier R, Banville D-R, Lévesque R, Lemieux J-M, Molson J, Therrien R, Ouellet M (2020) Development of a three-dimensional geological model, based on Quaternary chronology, geological mapping, and geophysical investigation, of a watershed in the discontinuous permafrost zone near Umiujaq (Nunavik, Canada). Hydrogeol J. https://doi.org/10.1007/s10040-020-02113-1

  • Ghanbarian B, Daigle H (2016) Thermal conductivity in porous media: percolation-based effective-medium approximation. Water Resour Res 52:295–314. https://doi.org/10.1002/2015WR017236

    Article  Google Scholar 

  • Grenier C, Anbergen H, Bense V, Chanzy Q, Coon E, Collier N, Costard F, Ferry M, Frampton A, Frederick J, Holmen J, Jost A, Kokh S, Kyrylyk B, McKenzie J, Molson J, Mouche E, Orgonzo L, Pannetier R, Rivière A, Roux N, Rühaak W, Scheidegger J, Selroos J-O, Therrien R, Vidstrand P, Voss C (2018) Groundwater flow and heat transport for systems undergoing freeze-thaw: intercomparison of numerical simulators for 2D test cases. Adv Water Resour 114:196–218. https://doi.org/10.1016/j.advwatres.2018.02.001

    Article  Google Scholar 

  • Grosse G, Romanovsky V, Jorgenson T, Anthony KW, Brown J, Overduin PP (2011) Vulnerability and feedbacks of permafrost to climate change. Trans Am Geophys Union 92(9):73–74

    Article  Google Scholar 

  • Gubler S, Endrizzi S, Gruber S, Purves RS (2013) Sensitivities and uncertainties of modeled ground temperatures in mountain environments. Geosci Model Dev 6(4):1319–1336. https://doi.org/10.5194/gmd-6-1319-2013

    Article  Google Scholar 

  • Hamby DM (1994) A review of techniques for parameter sensitivity analysis of environmental models. Environ Monit Assess 32(2):135–154

    Article  Google Scholar 

  • Hill MC (1998) Methods and guidelines for effective model calibration. US Geol Surv Water Resour Invest Rep 98-4005

  • IPCC (2013) The physical science basis: contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, 1535 pp

  • Jamin P, Cochand M, Dagenais S, Lemieux J-M, Fortier R, Molson J, Brouyère S (2020) Direct measurement of groundwater flux in aquifers within the discontinuous permafrost zone: an application of the finite volume point dilution method near Umiujaq (Nunavik, Canada). Hydrogeol J. https://doi.org/10.1007/s10040-020-02108-y

  • Kleinberg RL, Griffin DD (2005) NMR measurements of permafrost: unfrozen water assay, pore-scale distribution of ice, and hydraulic permeability of sediments. Cold Reg Sci Technol 42(1):63–77. https://doi.org/10.1016/j.coldregions.2004.12.002

    Article  Google Scholar 

  • Kurylyk BL, MacQuarrie KTB, McKenzie JM (2014) Climate change impacts on groundwater and soil temperatures in cold and temperate regions: implications, mathematical theory, and emerging simulation tools. Earth-Sci Rev 138:313–334. https://doi.org/10.1016/j.earscirev.2014.06.006

    Article  Google Scholar 

  • Lawrence D, Haddeland I, Langsholt E (2009) Calibration of HBV hydrological models using PEST parameter estimation. NVE report 1-2009, Norwegian Water Resources and Energy Directorate, Oslo, Norway

  • Lemieux J-M, Fortier R, Talbot-Poulin MC, Molson J, Therrien R, Ouellet M, Banville D, Cochand M, Murray R (2016) Groundwater occurrence in cold environments: examples from Nunavik, Canada. Hydrogeol J 24(6):497–1513. https://doi.org/10.1007/s10040-016-1411-1

    Article  Google Scholar 

  • Lemieux J-M, Fortier R, Murray R, Dagenais S, Cochand M, Delottier H, Therrien R, Molson J, Pryet A, Parhizkar M (2020) Groundwater dynamics within a watershed in the discontinuous permafrost zone near Umiujaq (Nunavik, Canada). Hydrogeol J. https://doi.org/10.1007/s10040-020-02110-4

  • Lenhart T, Eckhardt K, Fohrer N, Frede HG (2002) Comparison of two different approaches of sensitivity analysis. Phys Chem Earth 27(9–10):645–654

    Article  Google Scholar 

  • Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2(2):164–168

    Article  Google Scholar 

  • Liao C, Zhuang Q (2017) Quantifying the role of permafrost distribution in groundwater and surface water interactions using a three-dimensional hydrological model. Arct Antarct Alp Res 49(1):81–100. https://doi.org/10.1657/AAAR0016-022

    Article  Google Scholar 

  • Luetschg M, Lehning M, Haeberli W (2008) A sensitivity study of factors influencing warm/thin permafrost in the Swiss Alps. J Glaciol 54(187):696–704

    Article  Google Scholar 

  • Madsen H, Wilson G, Ammentorp HC (2002) Comparison of different automated strategies for calibration of rainfall-runoff models. J Hydrol 261(1–4):48–59

    Article  Google Scholar 

  • Mareschal JC, Jaupart C (2004) Variations of surface heat flow and lithospheric thermal structure beneath the North American craton. Earth Planet Sci Lett 223(1–2):65–77. https://doi.org/10.1016/j.epsl.2004.04.002

    Article  Google Scholar 

  • Marmy A, Salzmann N, Scherler M, Hauck C (2013) Permafrost model sensitivity to seasonal climatic changes and extreme events in mountainous regions. Environ Res Lett 8(3):L035048. https://doi.org/10.1088/1748-9326/8/3/035048

    Article  Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441

    Article  Google Scholar 

  • McKenzie JM, Voss CI (2013) Permafrost thaw in a nested groundwater-flow system. Hydrogeol J 21(1):299–316. https://doi.org/10.1016/j.advwatres.2006.08.008

    Article  Google Scholar 

  • Molson J, Frind EO (2018) HEATFLOW/SMOKER density-dependent flow and advective-dispersive transport of thermal energy, mass or residence time in three-dimensional porous or discretely-fractured porous media. Université Laval, Quebec City, QC

    Google Scholar 

  • Molson J, Frind EO, Palmer CD (1992) Thermal energy storage in an unconfined aquifer: 2. model development, validation, and application. Water Resour Res 28(10):2857–2867

    Article  Google Scholar 

  • Osterkamp TE (2005) The recent warming of permafrost in Alaska. Glob Planet Chang 49(3–4):187–202. https://doi.org/10.1016/j.gloplacha.2005.09.001

    Article  Google Scholar 

  • Pang Q, Zhao L, Li S, Ding Y (2012) Active layer thickness variations on the Qinghai-Tibet Plateau under the scenarios of climate change. Environ Earth Sci 66(3):849–857. https://doi.org/10.1007/s12665-011-1296-1

    Article  Google Scholar 

  • Pehme P, Parker BL, Cherry JA, Molson J, Greenhouse JP (2013) Enhanced detection of hydraulically active fractures by temperature profiling in lined heated bedrock boreholes. J Hydrol 484:1–15. https://doi.org/10.1016/j.jhydrol.2012.12.048

    Article  Google Scholar 

  • Rakovec O, Hill MC, Clark MP, Weerts AH, Teuling AJ, Uijlenhoet R (2014) Distributed evaluation of local sensitivity analysis (DELSA), with application to hydrologic models. Water Resour Res 50(1):409–426. https://doi.org/10.1002/2013WR014063

    Article  Google Scholar 

  • Rowland JC, Travis BJ, Wilson CJ (2011) The role of advective heat transport in talik development beneath lakes and ponds in discontinuous permafrost. Geophys Res Lett 38(17). https://doi.org/10.1029/2011GL048497

  • Shojae-Ghias MS, Therrien R, Molson J, Lemieux J-M (2016) Controls on permafrost thaw in a coupled groundwater-flow and heat-transport system: Iqaluit airport, Nunavut, Canada. Hydrogeol J 25(3):657–673. https://doi.org/10.1007/s10040-016-1515-7

    Article  Google Scholar 

  • Smith SL, Burgess MM, Riseborough D, Mark Nixon F (2005) Recent trends from Canadian permafrost thermal monitoring network sites. Permafr Periglac Process 16(1):19–30. https://doi.org/10.1002/ppp.511

    Article  Google Scholar 

  • Song X, Zhang J, Zhan C, Xuan Y, Ye M, Xu C (2015) Global sensitivity analysis in hydrological modeling: review of concepts, methods, theoretical framework, and applications. J Hydrol 523:739–757. https://doi.org/10.1016/j.jhydrol.2015.02.013

    Article  Google Scholar 

  • Streletskiy DA, Shiklomanov NI, Nelson FE (2012) Spatial variability of permafrost active-layer thickness under contemporary and projected climate in northern Alaska. Polar Geogr 35(2):95–116. https://doi.org/10.1080/1088937X.2012.680204

    Article  Google Scholar 

  • Wania R, Ross I, Prentice IC (2009) Integrating peatlands and permafrost into a dynamic global vegetation model: 1. evaluation and sensitivity of physical land surface processes. Glob Biogeochem Cycles 23(3). https://doi.org/10.1029/2008GB003412

  • Wellman TP, Voss CI, Walvoord MA (2013) Impacts of climate, lake size, and supra-and sub-permafrost groundwater flow on lake-talik evolution, Yukon Flats, Alaska (USA). Hydrogeol J 21(1):281–298. https://doi.org/10.1007/s10040-012-0941-4

    Article  Google Scholar 

  • Zhang Y, Chen W, Riseborough DW (2006) Temporal and spatial changes of permafrost in Canada since the end of the Little Ice Age. J Geophys Res Atmos 111(D22). https://doi.org/10.1029/2006JD007284

  • Zhang Y, Chen W, Riseborough DW (2008) Disequilibrium response of permafrost thaw to climate warming in Canada over 1850–2100. Geophys Res Lett 35(2). https://doi.org/10.1029/2007GL032117

  • Zhao L, Ping CL, Yang D, Cheng G, Ding Y, Liu S (2004) Changes of climate and seasonally frozen ground over the past 30 years in Qinghai-Xizang (Tibetan) Plateau, China. Glob Planet Chang 43(1–2):19–31. https://doi.org/10.1016/j.gloplacha.2004.02.003

    Article  Google Scholar 

  • Zipper SC, Lamontagne-Hallé P, McKenzie JM, Rocha AV (2018) Groundwater controls on post-fire permafrost thaw: water and energy balance effects. J Geophys Res Earth Surf 123(10):2677–2694. https://doi.org/10.1029/2018JF004611

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Pierre Therrien for providing technical help, and Sophie Dagenais for providing information on the Umiujaq model and for generously sharing her insights and model datasets.

Funding

This research was funded by a Master’s scholarship to the first author provided by the Sentinel North Research Program (Apogee Canada) at Université Laval, and by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant awarded to the second author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Molson.

Additional information

This article is part of the topical collection “Hydrogeology of a cold-region watershed near Umiujaq (Nunavik, Canada)”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albers, B.M.C., Molson, J.W. & Bense, V.F. Parameter sensitivity analysis of a two-dimensional cryo-hydrogeological numerical model of degrading permafrost near Umiujaq (Nunavik, Canada). Hydrogeol J 28, 905–919 (2020). https://doi.org/10.1007/s10040-020-02112-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02112-2

Keywords

Navigation