Skip to main content

Advertisement

Log in

Rapid groundwater recharge dynamics determined from hydrogeochemical and isotope data in a small permafrost watershed near Umiujaq (Nunavik, Canada)

Dynamique rapide de recharge des eaux souterraines déterminée à partir des données hydrogéochimiques et isotopiques dans un petit bassin versant à pergélisol près de Umiujaq (Nunavik, Canada)

Dinámica de una recarga rápida de aguas subterráneas determinada a partir de datos hidrogeoquímicos e isotópicos en una pequeña cuenca de permafrost cerca de Umiujaq (Nunavik, Canadá)

Umiujaq(加拿大努纳维克)附近小型永久冻土流域通过水文地球化学和同位素数据确定快速的地下水补给动态

Dinâmica rápida da recarga de águas subterrâneas determinada a partir de dados de hidrogeoquímica e isótopos em uma pequena bacia hidrográfica pergelissólica próximo de Umiujaq (Nunavik, Canadá)

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Hydrogeochemical data are used to better understand recharge dynamics and to support a hydrogeological conceptual model in a 2-km2 watershed in a discontinuous permafrost zone in Nunavik, Canada. The watershed contains an upper (surficial) and lower aquifer within Quaternary deposits, above and below a marine silt layer containing ice-rich permafrost mounds. The analysis is based on water samples from precipitation, groundwater monitoring wells, ground ice in permafrost mounds, thermokarst lakes and a perennial stream. Groundwater geochemistry in both aquifers reflects young, poorly evolved waters, with mainly Ca-HCO3 water types and low mineralisation ranging from 11 to 158 mg/L total dissolved solids (TDS), implying short pathways and rapid travel times of a year or less. While relatively low, TDS signatures in groundwater and surface water show increasing values downgradient. Groundwater isotope values (δ18OH2O and δ2HH2O) are often strongly influenced by snowmelt, while those of thermokarst lakes show evidence of evaporation. Recharge along the cuesta contributes to a transverse component of groundwater flow within the valley with higher TDS and δ13CDIC values influenced by open-system weathering. Even where permafrost-free, the marine silt unit has a strong confining effect and plays a more important role on recharge dynamics than the discontinuous permafrost. Nevertheless, the vulnerability of these types of hydrogeological aquifer systems is expected to increase due to rapid recharge dynamics associated with the gradual loss of the confining effect of permafrost. This hydrogeochemical data set will be useful as a baseline to document impacts of permafrost degradation on the hydrogeological system.

Résumé

Les données hydrogéochimiques sont utilisées pour mieux comprendre la dynamique de recharge et pour appuyer l’élaboration d’un modèle conceptuel hydrogéologique d’un bassin hydrogéologique de 2 km2 dans une zone de pergélisol discontinu dans le territoire de Nunavik, au Canada. Le bassin versant comprend un aquifère supérieur (superficiel) et inférieur qui se développe dans les dépôts du Quaternaire, au-dessus et au-dessous d’une couche de limon marin renfermant des monticules de pergélisol riches en glace. L’analyse est basée sur des échantillons d’eau des précipitations, des puits de suivi des eaux souterraines, de glace des monticules de pergélisol, de lacs de type thermokarst et de cours d’eau pérennes. La géochimie des eaux souterraines dans les deux aquifères reflète des caractéristiques d’eau jeune et peu évoluée, avec principalement des types d’eau Ca-HCO3 et une faible minéralisation comprise entre 11 et 158 mg/L pour le total des solides dissous, traduisant des écoulements de faible distance et des temps de transit rapides d’une année et même moins. Bien que relativement faibles, les signatures TDS dans les eaux souterraines et les eaux de surface montrent des valeurs croissantes à l’aval des écoulements. Les valeurs des isotopes des eaux souterraines (δ18OH2O and δ2HH2O) sont souvent fortement influencées par la fonte des neiges, tandis que celles des lacs thermokarstiques montrent des signes d’évaporation. La recharge le long de la cuesta contribue à une composante transversale de l’écoulement des eaux souterraines dans la vallée avec des valeurs plus élevées de TDS et de δ13CDIC influencées par l’altération du système ouvert. Même lorsqu’elle est exempte de pergélisol, l’unité de limon marin est fortement peu perméable et joue un rôle plus important sur la dynamique de recharge que le pergélisol discontinu. Néanmoins, on s’attend à ce que la vulnérabilité de ces types de systèmes hydrogéologiques aquifères augmente en raison de la dynamique rapide de recharge liée à la perte progressive du caractère imperméable du pergélisol. Cet ensemble de données hydrogéochimiques sera utile comme référence pour documenter les impacts de la dégradation du pergélisol sur le système hydrogéologique.

Resumen

Los datos hidrogeoquímicos se utilizan para comprender mejor la dinámica de la recarga y para apoyar un modelo conceptual hidrogeológico en una cuenca de 2 km2 en una zona discontinua de permafrost en Nunavik, Canadá. La cuenca contiene un acuífero superior (superficial) e inferior dentro de los depósitos cuaternarios, por encima y por debajo de una capa de limo marino que contiene montículos de permafrost ricos en hielo. El análisis se basa en muestras de agua de precipitación, de pozos de monitoreo de agua subterránea, de hielo del subsuelo en los montículos de permafrost, de lagos de termokarst y de un arroyo perenne. La geoquímica de las aguas subterráneas en ambos acuíferos refleja aguas jóvenes y poco evolucionadas, con tipos de agua principalmente Ca-HCO3 y baja mineralización que van de 11 a 158 mg/L de sólidos disueltos totales (TDS), lo que implica trayectorias cortas y tiempos de tránsito rápidos de un año o menos. Aunque el contenido de TDS es relativamente bajo en las aguas subterráneas y superficiales muestran valores crecientes pendiente abajo. Los valores de los isótopos de las aguas subterráneas (δ18OH2O y δ2HH2O) a menudo están fuertemente influenciados por el deshielo, mientras que los de los lagos termokársticos muestran evidencia de evaporación. La recarga a lo largo de la cuesta contribuye a un componente transversal del flujo de agua subterránea dentro del valle con valores más altos de TDS y δ13CDIC influenciados por la meteorización en los sistemas abiertos. Incluso cuando está libre de permafrost, la unidad del limo marino tiene un fuerte efecto de confinamiento y juega un papel más importante en la dinámica de recarga que el permafrost discontinuo. Sin embargo, se espera que la vulnerabilidad de estos tipos de sistemas acuíferos hidrogeológicos aumente debido a la dinámica de la recarga rápida asociada con la pérdida gradual del efecto de confinamiento del permafrost. Este conjunto de datos hidrogeoquímicos será útil como línea de base para documentar los impactos de la degradación del permafrost en el sistema hidrogeológico.

摘要

水文地球化学数据用于更好地理解补给动力学, 并支撑构建加拿大努纳维克不连续永久冻土带2 km2流域的水文地质概念模型。该流域包含第四系沉积物中的上部(表层)和下部含水层, 该沉积物位于富含冰的永久冻土堆的海洋淤泥层之上和之下。该分析基于来自降水, 地下水监测井, 多年冻土丘中的地面冰, 热岩溶湖泊和常流河的水样。两个含水层中的地下水地球化学反映了年轻的, 演替不好的水, 主要是Ca-HCO3型和总溶解固体(TDS)为11至158 mg/L的低矿化度水, 这意味着一年或更短的短途通道和快速途经时间。虽然相对来说较低, 但地下水和地表水中的TDS特征显示增幅值的降低。地下水同位素值(δ18OH2O和δ2HH2O)通常受到融雪的强烈影响, 而热岩溶湖泊则显示有蒸发的证据。沿着cuesta的补给有助于受开放系统风化作用影响的更高TDS和δ13CDIC值山谷内地下水流的横向分量。即使在无永久冻土的情况下, 海洋淤泥单元也具有强大的限制作用, 并且在补给动力学中比不连续的永久冻土更重要。然而, 由于与永久冻土限制效应逐渐减弱相关的快速补给机制, 这些类型的水文地质含水层系统的脆弱性估计会增加。该水文地球化学数据集将作为记录永久冻土退化对水文地质系统影响的基线。

Resumo

Os dados hidrogeoquímicos são usados para entender melhor a dinâmica da recarga e apoiar um modelo conceitual hidrogeológico de uma bacia hidrográfica de 2 km2 em uma zona descontínua de petgelissolos em Nunavik, Canadá. A bacia hidrográfica contém um aquífero superior (superficial) e inferior dentro dos depósitos quaternários, acima e abaixo de uma camada de silte marinho contendo acúmulos de pergelissolos ricos em gelo. A análise é baseada em amostras de água de precipitação, de poços de monitoramento de águas subterrâneas, de lagos cársticos termais, de um córrego perene e gelo de superfície em acúmulos de pergelissolo. A geoquímica das águas subterrâneas em ambos os aquíferos reflete águas jovens pouco desenvolvidas, com principalmente tipos de água Ca-HCO3 e baixa mineralização variando de 11 a 158 mg/L de sólidos dissolvidos totais (SDT), implicando caminhos curtos e tempos de viagem rápidos de um ano ou menos. Embora relativamente baixas, as assinaturas de SDT nas águas subterrâneas e nas águas superficiais mostram valores crescentes em declínio. Os valores dos isótopos das águas subterrâneas (δ18OH2O e δ2HH2O) são frequentemente bastante influenciados pelo derretimento da neve, enquanto os dos lagos cársticos termais mostram evidências de evaporação. A recarga ao longo da cuesta contribui para um componente transversal do fluxo das águas subterrâneas no vale, com valores mais altos de SDT e δ13CDIC influenciados pelo intemperismo do sistema aberto. Mesmo onde não há pergelissolo, a unidade de silte marinho tem um forte efeito confinante e desempenha um papel mais importante na dinâmica de recarga do que o pergelissolo descontínuo. No entanto, espera-se que a vulnerabilidade desses tipos de sistemas aquíferos aumente devido à rápida dinâmica de recarga associada à perda gradual do efeito limitante do pergelissolo. Esse conjunto de dados hidrogeoquímicos será útil como base para documentar os impactos da degradação do pergelissolo no sistema hidrogeológico.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alexeev SV, Alexeeva LP (2003) Hydrogeochemistry of the permafrost zone in the central part of the Yakutian diamond-bearing province, Russia. Hydrogeol J 11:574–581. https://doi.org/10.1007/s10040-003-0270-8

    Article  Google Scholar 

  • Back W (1966) Hydrochemical facies and ground-water flow patterns in northern part of Atlantic Coastal Plain. US Geol Surv Prof Pap 498-A https://doi.org/10.3133/pp498A

  • Banville D-R (2016) Modélisation cryohydrogéologique tridimensionnelle d’un bassin versant pergélisolé, une étude cryohydrogéophysique de proche surface en zone de pergélisol discontinu à Umiujaq au Québec Nordique [Three-dimensional cryohydrogeological modeling of a permafrost watershed: a near-surface cryohydrogeophysical study in a discontinuous permafrost zone in Umiujaq, northern Quebec]. MSc Thesis, Université Laval, Québec City, Canada

  • Beck I, Ludwig R, Bernier M, Levesque E, Boike J (2015) Assessing permafrost degradation and land cover changes (1986–2009) using remote sensing data over Umiujaq, Sub-Arctic Quebec. Permafr Periglac Process 26:129–141. https://doi.org/10.1002/ppp.1839

    Article  Google Scholar 

  • Bense VF, Ferguson G, Kooi H (2009) Evolution of shallow groundwater flow systems in areas of degrading permafrost. Geophys Res Lett 36. https://doi.org/10.1029/2009GL039225

  • Blanchette D, Cloutier V, Roy M, Audet-Gagnon F, Castelli S, Beaudry C (2010) Protocole d’échantillonnage des eaux souterraines-Programme d’acquisition de connaissances sur les eaux souterraines au Québec (PACES) [Groundwater sampling protocol: Groundwater Knowledge Acquisition Program in Quebec]. UQAT, Rouyn-Noranda, Quebec, Canada

  • Bosson E, Selroos J-O, Stigsson M, Gustafsson L-G, Destouni G (2013) Exchange and pathways of deep and shallow groundwater in different climate and permafrost conditions using the Forsmark site, Sweden, as an example catchment. Hydrogeol J 21:225–237. https://doi.org/10.1007/s10040-012-0906-7

    Article  Google Scholar 

  • Boucher JL, Carey SK (2010) Exploring runoff processes using chemical, isotopic and hydrometric data in a discontinuous permafrost catchment. Hydrol Res 41:508–519. https://doi.org/10.2166/nh.2010.146

    Article  Google Scholar 

  • Brown R, Lemay M, Allard M, Barrand EN, Barrette C, Bégin Y, Bell T, Bernier M, Bleau S, Chaumont D, Dibike Y, Frigon A, Leblanc P, Paquin D, Sharp M, Way R (2012) Climate variability and change in the Canadian Eastern Subarctic IRIS region (Nunavik and Nunatsiavut). In: Nunavik and Nunatsiavut: From science to policy. An Integrated Regional Impact Study (IRIS) of climate change and modernization. ArcticNet, Québec, QC

  • Burn CR, Michel FA (1988) Evidence for recent temperature-induced water migration into permafrost from the tritium content of ground ice near Mayo, Yukon Territory, Canada. Can J Earth Sci 25:909–915. https://doi.org/10.1139/e88-087

    Article  Google Scholar 

  • Callegary J, Kikuchi C, Koch J, Lilly M, Leake S (2013) Review: Groundwater in Alaska (USA). Hydrogeol J 21:25–39. https://doi.org/10.1007/s10040-012-0940-5

    Article  Google Scholar 

  • Calmels F, Gagnon O, Allard M (2005) A portable earth-drill system for permafrost studies. Permafr Periglac Process 16:311–315. https://doi.org/10.1002/ppp.529

    Article  Google Scholar 

  • Calmels F, Delisle G, Allard M (2008) Internal structure and the thermal and hydrological regime of a typical lithalsa: significance for permafrost growth and decay. Can J Earth Sci 45:31–43. https://doi.org/10.1139/e07-068

    Article  Google Scholar 

  • Carey S, Boucher J, Duarte C (2013) Inferring groundwater contributions and pathways to streamflow during snowmelt over multiple years in a discontinuous permafrost subarctic environment (Yukon, Canada). Hydrogeol J 21:67–77. https://doi.org/10.1007/s10040-012-0920-9

    Article  Google Scholar 

  • Cheng G, Jin H (2013) Permafrost and groundwater on the Qinghai-Tibet plateau and in Northeast China. Hydrogeol J 21:5–23. https://doi.org/10.1007/s10040-012-0927-2

    Article  Google Scholar 

  • Cheng GD (1983) The mechanism of repeated-segregation for the formation of thick layered ground ice. Cold Reg Sci Technol 8:57–66. https://doi.org/10.1016/0165-232X(83)90017-4

    Article  Google Scholar 

  • Chouinard C, Fortier R, Mareschal JC (2007) Recent climate variations in the subarctic inferred from three borehole temperature profiles in northern Quebec, Canada. Earth Planet Sci Lett 263:355–369. https://doi.org/10.1016/j.epsl.2007.09.017

    Article  Google Scholar 

  • Christner E, Kohler M, Schneider M (2017) The influence of snow sublimation and meltwater evaporation on delta D of water vapor in the atmospheric boundary layer of Central Europe. Atmos Chem Phys 17:1207–1225. https://doi.org/10.5194/acp-17-1207-2017

    Article  Google Scholar 

  • Claesson Liljedahl L, Kontula A, Harper J, Näslund J-O, Selroos J-O, Pitkänen P, Puigdomenech I, Hobbs M, Follin S, Hirschorn S, Jansson P, Kennell L, Marcos N, Ruskeeniemi T, Tullborg E-L, Vidstrand P (2016) The Greenland Analogue Project: final report. SKB - Swedish Nuclear Fuel and Waste Management Co, Stockholm

  • Clark ID (2015) Groundwater geochemistry and isotopes. CRC, Boca Raton, FL

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. CRC, Boca Raton, FL

  • Clark ID, Lauriol B (1997) Aufeis of the Firth River basin, northern Yukon, Canada: insights into permafrost hydrogeology and karst. Arct Alp Res 29:240–252. https://doi.org/10.2307/1552053

    Article  Google Scholar 

  • Clark ID, Lauriol B, Harwood L, Marschner M (2001) Groundwater contributions to discharge in a permafrost setting, Big Fish River, N.W.T., Canada. Arct Antarct Alp Res 33:62–69. https://doi.org/10.2307/1552278

    Article  Google Scholar 

  • Cochand M, Molson J, Lemieux J-M (2019) Groundwater hydrogeochemistry in permafrost regions. Permafr Periglac Process. https://doi.org/10.1002/ppp.1998

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703. https://doi.org/10.1126/science.133.3465.1702

    Article  Google Scholar 

  • Cronin AA, Barth JAC, Elliot T, Kalin RM (2005) Recharge velocity and geochemical evolution for the Permo-Triassic Sherwood Sandstone, Northern Ireland. J Hydrol 315:308–324. https://doi.org/10.1016/j.jhydrol.2005.04.016

    Article  Google Scholar 

  • Dagenais S, Molson J, Lemieux J-M, Fortier R, Therrien R (2020) Coupled cryo-hydrogeological modelling of permafrost dynamics near Umiujaq (Nunavik, Canada). Hydrogeol J https://doi.org/10.1007/s10040-020-02111-3

  • Douglas TA, Blum JD, Guo L, Keller K, Gleason JD (2013) Hydrogeochemistry of seasonal flow regimes in the Chena River, a subarctic watershed draining discontinuous permafrost in interior Alaska (USA). Chem Geol 335:48–62. https://doi.org/10.1016/j.chemgeo.2012.10.045

    Article  Google Scholar 

  • Evans SG, Ge S (2017) Contrasting hydrogeologic responses to warming in permafrost and seasonally frozen ground hillslopes. Geophys Res Lett 44:1803–1813. https://doi.org/10.1002/2016GL072009

    Article  Google Scholar 

  • Fallu MA, Pienitz R, Walker IR, Lavoiec M (2005) Paleolimnology of a shrub-tundra lake and response of aquatic and terrestrial indicators to climatic change in arctic Quebec, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 215:183–203. https://doi.org/10.1016/j.palaeo.2004.07.006

    Article  Google Scholar 

  • Ford JD (2009) Dangerous climate change and the importance of adaptation for the Arctic’s Inuit population. Environ Res Lett 4:024006. https://doi.org/10.1088/1748-9326/4/2/024006

    Article  Google Scholar 

  • Fortier R, Aubé-Maurice B (2008) Fast permafrost degradation near Umiujaq in Nunavik (Canada) since 1957 assessed from time-lapse aerial and satellite photographs. In: Proceedings 9th International Conference on Permafrost, vol 1, Fairbanks, AK, July 2008, pp 457–462

  • Fortier R, Lemieux J-M, Therrien R, Molson J, Cochand M (2017) Rapport de synthèse sur le déploiement du réseau Immatsiak à Umiujaq au Québec nordique pour le suivi des eaux souterraines en régions froides [Synthesis report on the deployment of the Immatsiak network in Umiujaq, northern Quebec for groundwater monitoring in cold regions]. Université Laval, Quebec City, QC

  • Fortier R, Banville DR, Lévesque R, Lemieux J-M, Molson J, Therrien R, Ouellet M (2020) Development of a three-dimensional geological model, based on Quaternary chronology, geological mapping, and geophysical investigation, of a watershed in the discontinuous permafrost zone near Umiujaq (Nunavik, Canada). Hydrogeol J https://doi.org/10.1007/s10040-020-02113-1

  • Frampton A, Painter SL, Destouni G (2013) Permafrost degradation and subsurface-flow changes caused by surface warming trends. Hydrogeol J 21:271–280. https://doi.org/10.1007/s10040-012-0938-z

    Article  Google Scholar 

  • Grosse G, Romanovsky V, Jorgenson T, Anthony KW, Brown J, Overduin PP (2011) Vulnerability and feedbacks of permafrost to climate change. Eos 92:73–74. https://doi.org/10.1029/2011EO090001

    Article  Google Scholar 

  • Health Canada (2017) Guidelines for Canadian drinking water quality: summary table. Health Canada, Ottawa, ON

  • Hounslow A (1995) Water quality data: analysis and interpretation. CRC, Boca Raton, FL

  • Jamin P, Cochand M, Dagenais S, Lemieux J-M, Fortier R, Molson J, Brouyère S (2020) Direct measurement of groundwater flux in aquifers within the discontinuous permafrost zone: an application of the finite volume point dilution method near Umiujaq (Nunavik, Canada). Hydrogeol J https://doi.org/10.1007/s10040-020-02108-y

  • Kerwin MW, Overpeck JT, Webb RS, Anderson KH (2004) Pollen-based summer temperature reconstructions for the eastern Canadian boreal forest, subarctic, and Arctic. Quat Sci Rev 23:1901–1924. https://doi.org/10.1016/j.quascirev.2004.03.013

    Article  Google Scholar 

  • Kessler TJ, Harvey CF (2001) Global flux of carbon dioxide into groundwater. Geophys Res Lett 28:279–282. https://doi.org/10.1029/2000GL011505

    Article  Google Scholar 

  • Kokelj SV, Burn CR (2003) Ground ice and soluble cations in near-surface permafrost, Inuvik, Northwest Territories, Canada. Permafr Periglac Process 14:275–289. https://doi.org/10.1002/ppp.458

    Article  Google Scholar 

  • Kokelj SV, Jorgenson MT (2013) Advances in thermokarst research. Permafr Periglac Process 24:108–119. https://doi.org/10.1002/ppp.1779

    Article  Google Scholar 

  • Kurylyk BL, Hayashi M, Quinton WL, McKenzie JM, Voss CI (2016) Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow. Water Resour Res 52:1286–1305. https://doi.org/10.1002/2015wr018057

    Article  Google Scholar 

  • Lacelle D, Vasil’chuk YK (2013) Recent progress (2007–2012) in permafrost isotope geochemistry. Permafr Periglac Process 24:138–145. https://doi.org/10.1002/ppp.1768

    Article  Google Scholar 

  • Lemieux J-M, Fortier R, Talbot-Poulin M-C, Molson J, Therrien R, Ouellet M, Banville D, Cochand M, Murray R (2016) Groundwater occurrence in cold environments: examples from Nunavik, Canada. Hydrogeol J 24:1497–1513. https://doi.org/10.1007/s10040-016-1411-1

    Article  Google Scholar 

  • Lemieux J-M, Fortier R, Murray R, Dagenais S, Cochand M, Delottier H, Therrien R, Molson J, Pryet A, Parhizkar M (2020) Groundwater dynamics within a watershed in the discontinuous permafrost zone near Umiujaq (Nunavik, Canada). Hydrogeol J https://doi.org/10.1007/s10040-020-02110-4

  • Ma R, Sun ZY, Hu YL, Chang QX, Wang S, Xing WL, Ge MY (2017) Hydrological connectivity from glaciers to rivers in the Qinghai-Tibet plateau: roles of suprapermafrost and subpermafrost groundwater. Hydrol Earth Syst Sci 21:4803–4823. https://doi.org/10.5194/hess-21-4803-2017

    Article  Google Scholar 

  • McKenzie JM, Voss CI (2013) Permafrost thaw in a nested groundwater-flow system. Hydrogeol J 21:299–316. https://doi.org/10.1007/s10040-012-0942-3

    Article  Google Scholar 

  • Messier V, Levesque B, Proulx J, Ward B, Libman M, Couillard M, Martin D, Hubert B (2007) Zoonotic diseases, drinking water and gastroenteritis in Nunavik: a brief portrait. Government of Quebec, Ministry of Communications, Quebec, QC

  • Michel FA (1986) Hydrogeology of the Central Mackenzie Valley. J Hydrol 85:379–405. https://doi.org/10.1016/0022-1694(86)90068-5

    Article  Google Scholar 

  • Michelsen N, van Geldern R, Roßmann Y, Bauer I, Schulz S, Barth JAC, Schüth C (2018) Comparison of precipitation collectors used in isotope hydrology. Chem Geol 488:171–179. https://doi.org/10.1016/j.chemgeo.2018.04.032

    Article  Google Scholar 

  • Moore R (2004) Introduction to salt dilution gauging for streamflow measurement: part 1. Streamline Watershed Manag Bull 7:20–23

    Google Scholar 

  • Narancic B, Wolfe BB, Pienitz R, Meyer H, Lamhonwah D (2017) Landscape-gradient assessment of thermokarst lake hydrology using water isotope tracers. J Hydrol 545:327–338. https://doi.org/10.1016/j.jhydrol.2016.11.028

    Article  Google Scholar 

  • Parkhurst DL, Appelo C (2014) Description of input and examples for PHREEQC version 3--A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey, Reston, VA

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. Eos 25:914–923. https://doi.org/10.1029/TR025i006p00914

    Article  Google Scholar 

  • Provencher-Nolet L (2014) Détection de changement à court terme de la toundra arbustive à partir de photographies aériennes, région d’Umiujaq, Nunavik, Québec, Canada [Detection of short-term shrub tundra change from aerial photographs, Umiujaq area, Nunavik, Quebec, Canada]. Université du Québec, Institut national de la recherche scientifique (INRS), Quebec City, QC, Canada

  • Puls RW, Barcelona MJ (1996) Low-flow (minimal drawdown) ground-water sampling procedures. US EPA, Office of Research and Development, Office of Solid Waste and Emergency Response, Washington, DC

  • Romanovsky VE, Smith SL, Christiansen HH (2010) Permafrost thermal state in the polar northern hemisphere during the international polar year 2007–2009: a synthesis. Permafr Periglac Process 21:106–116. https://doi.org/10.1002/ppp.689

    Article  Google Scholar 

  • Rowland JC, Coon ET (2016) From documentation to prediction: raising the bar for thermokarst research. Hydrogeol J 24:645–648. https://doi.org/10.1007/s10040-015-1331-5

    Article  Google Scholar 

  • Rozanski K, Araguás-Araguás L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. In: Climate change in continental isotopic records. Geophys Monograph Ser 78, AGU, Washington, DC, pp 1–36

  • Schuster PF, Schaefer KM, Aiken GR, Antweiler RC, Dewild JF, Gryziec JD, Gusmeroli A, Hugelius G, Jafarov E, Krabbenhoft DP, Liu L, Herman-Mercer N, Mu CC, Roth DA, Schaefer T, Striegl RG, Wickland KP, Zhang TJ (2018) Permafrost stores a globally significant amount of mercury. Geophys Res Lett 45:1463–1471. https://doi.org/10.1002/2017gl075571

    Article  Google Scholar 

  • St-Jean G (2003) Automated quantitative and isotopic (13C) analysis of dissolved inorganic carbon and dissolved organic carbon in continuous-flow using a total organic carbon analyser. Rapid Commun Mass Spectrom 17:419–428. https://doi.org/10.1002/rcm.926

    Article  Google Scholar 

  • Stiff HA (1951) The interpretation of chemical water analysis by means of patterns. J Petroleum Technol 192:376–378. https://doi.org/10.2118/951376-G

    Article  Google Scholar 

  • Stocker T (2014) Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, New York

  • Stotler RL, Frape SK, Ruskeeniemi T, Ahonen L, Onstott TC, Hobbs MY (2009) Hydrogeochemistry of groundwaters in and below the base of thick permafrost at Lupin, Nunavut, Canada. J Hydrol 373:80–95. https://doi.org/10.1016/j.jhydrol.2009.04.013

    Article  Google Scholar 

  • Stotler RL, Frape SK, Freifeld BM, Holden B, Onstott TC, Ruskeeniemi T, Chan E (2011) Hydrogeology, chemical and microbial activity measurement through deep permafrost. Ground Water 49:348–364. https://doi.org/10.1111/j.1745-6584.2010.00724.x

    Article  Google Scholar 

  • Truchon-Savard A, Payette S (2012) Black spruce colonization of forest-tundra snow patches of eastern Canada Paper presented at the 42nd International Arctic workshop, Winter Park, CO, March 2012

  • Utting N, Lauriol B, Mochnacz N, Aeschbach-Hertig W, Clark I (2013) Noble gas and isotope geochemistry in western Canadian Arctic watersheds: tracing groundwater recharge in permafrost terrain. Hydrogeol J 21:79–91. https://doi.org/10.1007/s10040-012-0913-8

    Article  Google Scholar 

  • van Geldern R, Barth JAC (2012) Optimization of instrument setup and post-run corrections for oxygen and hydrogen stable isotope measurements of water by isotope ratio infrared spectroscopy (IRIS). Limnol Oceanogr Methods 10:1024–1036. https://doi.org/10.4319/lom.2012.10.1024

    Article  Google Scholar 

  • van Geldern R, Verma MP, Carvalho MC, Grassa F, Delgado-Huertas A, Monvoisin G, Barth JA (2013) Stable carbon isotope analysis of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) in natural waters: results from a worldwide proficiency test. Rapid Commun Mass Spectrom 27:2099–2107. https://doi.org/10.1002/rcm.6665

    Article  Google Scholar 

  • Vogel JC (1993) Variability of carbon isotope fractionation during photosynthesis. In: Hall AE, Farquhar GD (eds) Stable isotopes and plant carbon-water relations. Academic, San Diego, CA, pp 29–46

  • Walvoord MA, Kurylyk BL (2016) Hydrologic impacts of thawing permafrost: a review. Vadose Zone J 15:20. https://doi.org/10.2136/vzj2016.01.0010

    Article  Google Scholar 

  • Walvoord MA, Voss CI, Wellman TP (2012) Influence of permafrost distribution on groundwater flow in the context of climate-driven permafrost thaw: example from Yukon Flats Basin, Alaska, United States. Water Resour Res 48. https://doi.org/10.1029/2011WR011595

  • Wellman TP, Voss CI, Walvoord MA (2013) Impacts of climate, lake size, and supra- and sub-permafrost groundwater flow on lake-talik evolution, Yukon Flats, Alaska (USA). Hydrogeol J 21:281–298. https://doi.org/10.1007/s10040-012-0941-4

    Article  Google Scholar 

  • Williams JR (1970) Ground water in the permafrost regions of Alaska. US Government Printing Office, Washington, DC

  • Wolfe BB, Karst-Riddoch TL, Hall RI, Edwards TWD, English MC, Palmini R, McGowan S, Leavitt PR, Vardy SR (2007) Classification of hydrological regimes of northern floodplain basins (Peace-Athabasca Delta, Canada) from analysis of stable isotopes (delta O-18, delta H-2) and water chemistry. Hydrol Process 21:151–168. https://doi.org/10.1002/hyp.6229

    Article  Google Scholar 

  • Woo M-K, Kane DL, Carey SK, Yang D (2008) Progress in permafrost hydrology in the new millennium. Permafr Periglac Process 19:237–254. https://doi.org/10.1002/ppp.613

    Article  Google Scholar 

  • Ye B, Yang D, Zhang Z, Kane DL (2009) Variation of hydrological regime with permafrost coverage over Lena Basin in Siberia. J Geophys Res Atmos 114. https://doi.org/10.1029/2008JD010537

Download references

Acknowledgements

We would like to thank everyone who helped us in this study during the field work and data collection, especially Renaud Murray, Marie-Catherine Talbot Poulin, Pierre Jamin, Sophie Dagenais, Pierrick Lamontagne-Hallé, Shuai Guo, Masoumeh Parhizkar, and Jonathan Sottas. Pierre Therrien provided valuable technical support for data treatment. Finally, we would like to thank the Inuit community of Umiujaq, in particular Ernest Tumic and Darleen MacDougal, for their help and collaboration on this project.

Funding

We acknowledge funding from a Strategic Project Grant of the Natural Sciences and Engineering Research Council of Canada (NSERC), the Quebec Ministry of Environment (Ministère du développement durable, de l’environnement et de la lutte contre les changements climatiques – MDDELCC) and the Québec Research Fund (Fonds de recherche Nature et Technologies du Québec – FRQNT). We also acknowledge a travel grant from the Quebec Ministry of International Relations (Ministère des relations internationales et de la Francophonie – MRIF). Administrative and logistical support from the Centre d’études nordiques (CEN), Université Laval, is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Molson.

Additional information

This article is part of the topical collection “Hydrogeology of a cold-region watershed near Umiujaq (Nunavik, Canada)”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cochand, M., Molson, J., Barth, J.A.C. et al. Rapid groundwater recharge dynamics determined from hydrogeochemical and isotope data in a small permafrost watershed near Umiujaq (Nunavik, Canada). Hydrogeol J 28, 853–868 (2020). https://doi.org/10.1007/s10040-020-02109-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02109-x

Keywords

Navigation