Skip to main content

Advertisement

Log in

Increased Myocardial Retention of Mesenchymal Stem Cells Post-MI by Pre-Conditioning Exercise Training

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Stem cell (SC) therapy is a promising approach to improve post-myocardial infarction (MI) cardiac remodeling, but the proinflammatory microenvironment may lead to SC loss and, therefore, may have a negative impact on therapy. It appears that exercise training (ET) improves myocardial microenvironment for SC transplantation. Therefore, we tested the effect of ET on post-infarction retention of adipose-derived SCs (ADSCs) and its combined effects on the inflammatory microenvironment. Fischer-344 female rats were randomized to one of the following groups: Sham; sedentary coronary occlusion who did not receive ADSCs (sMI); sedentary coronary occlusion who received ADSCs; exercise coronary occlusion who received ADSCs. Rats were trained nine weeks prior to MI, followed by ADSCs transplantation. The MI led to left ventricle (LV) dilation and dysfunction, myocardial hypertrophy and fibrosis, and increased proinflammatory profile compared to Sham rats. Conversely, ADSCs transplanted rats exhibited, better morphological and functional LV parameters; inhibition of myocardial hypertrophy and fibrosis; and attenuation of proinflammatory cytokines (interleukins 1β and 10, tumor necrosis factor α, and transforming growth factor β) in the myocardium compared to sMI rats. Interestingly, ET enhanced the effect of ADSCs on interleukin 10 expression. There was a correlation between cytokine expression and myocardial ADSCs retention. The. ET enhanced the beneficial effects of ADSCs in infarcted myocardium, which was associated with higher ADSCs retention. These findings highlight the importance of ET in myocardial retention of ADSCs and attenuation of cardiac remodeling post-infarction. Cytokine analysis suggests improvement in ET-linked myocardial microenvironment based on its anti-inflammatory action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cai, B., Wang, G., Chen, N., Liu, Y., Yin, K., Ning, C., & Lu, Y. (2014). Bone marrow mesenchymal stem cells protected post-infarcted myocardium against arrhythmias via reversing potassium channels remodelling. Journal of Cellular and Molecular Medicine , 18(7), 1407–1416. https://doi.org/10.1111/jcmm.12287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Si, Z., Wang, X., Sun, C., Kang, Y., Xu, J., Wang, X., & Hui, Y. (2019). Adipose-derived stem cells: Sources, potency, and implications for regenerative therapies. Biomedicine & Pharmacotherapy, 114, 108765. https://doi.org/10.1016/j.biopha.2019.108765

    Article  CAS  Google Scholar 

  3. Bacakova, L., Zarubova, J., Travnickova, M., Musilkova, J., Pajorova, J., Slepicka, P., & Molitor, M. (2018). Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review. Biotechnology Advances, 36(4), 1111–1126. https://doi.org/10.1016/j.biotechadv.2018.03.011

    Article  PubMed  Google Scholar 

  4. de Oliveira, T. S., Serra, A. J., Manchini, M. T., Bassaneze, V., de Krieger, J. E. Tarso Camillo de Carvalho, P.,.. . Silva, J. A. Jr. (2015). Effects of low level laser therapy on attachment, proliferation, and gene expression of VEGF and VEGF receptor 2 of adipocyte-derived mesenchymal stem cells cultivated under nutritional deficiency. Lasers in Medical Science, 30(1), 217–223. https://doi.org/10.1007/s10103-014-1646-9.

  5. Song, S. Y., Chung, H. M., & Sung, J. H. (2010). The pivotal role of VEGF in adipose-derived-stem-cell-mediated regeneration. Expert Opinion on Biological Therapy, 10(11), 1529–1537. https://doi.org/10.1517/14712598.2010.522987

    Article  CAS  PubMed  Google Scholar 

  6. Samper, E., Diez-Juan, A., Montero, J. A., & Sepulveda, P. (2013). Cardiac cell therapy: boosting mesenchymal stem cells effects. Stem Cell Reviews, 9(3), 266–280. https://doi.org/10.1007/s12015-012-9353-z

    Article  CAS  Google Scholar 

  7. Wu, J. Y., Chen, C. H., Wang, C. Z., Ho, M. L., Yeh, M. L., & Wang, Y. H. (2013). Low-power laser irradiation suppresses inflammatory response of human adipose-derived stem cells by modulating intracellular cyclic AMP level and NF-kappaB activity. PLoS One, 8(1), e54067. https://doi.org/10.1371/journal.pone.0054067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu, K. H., Mo, X. M., Han, Z. C., & Zhou, B. (2011). Stem cell engraftment and survival in the ischemic heart. The Annals of Thoracic Surgery, 92(5), 1917–1925. https://doi.org/10.1016/j.athoracsur.2011.07.012

    Article  PubMed  Google Scholar 

  9. Bruyneel, A. A., Sehgal, A., Malandraki-Miller, S., & Carr, C. (2016). Stem Cell Therapy for the Heart: Blind Alley or Magic Bullet? Journal of Cardiovascular Translational Research, 9(5–6), 405–418. https://doi.org/10.1007/s12265-016-9708-y

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fish, K. M., Ishikawa, K., & Hajjar, R. J. (2018). Stem cell therapy for acute myocardial infarction: on the horizon or still a dream? Coronary Artery Disease , 29(2), 89–91. https://doi.org/10.1097/MCA.0000000000000589

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shafei, A. E., Ali, M. A., Ghanem, H. G., Shehata, A. I., Abdelgawad, A. A., Handal, H. R., & El-Shal, A. S. (2018). Mechanistic effects of mesenchymal and hematopoietic stem cells: New therapeutic targets in myocardial infarction. Journal of Cellular Biochemistry, 119(7), 5274–5286. https://doi.org/10.1002/jcb.26637

    Article  CAS  PubMed  Google Scholar 

  12. Suzuki, K., Murtuza, B., Beauchamp, J. R., Brand, N. J., Barton, P. J., Varela-Carver, A., & Yacoub, M. H. (2004). Role of interleukin-1beta in acute inflammation and graft death after cell transplantation to the heart. Circulation, 110(11 Suppl 1), II219-I224. https://doi.org/10.1161/01.CIR.0000138388.55416.06

    Article  CAS  PubMed  Google Scholar 

  13. Yang, Y. J., Qian, H. Y., Huang, J., Geng, Y. J., Gao, R. L., Dou, K. F., & Zhao, S. H. (2008). Atorvastatin treatment improves survival and effects of implanted mesenchymal stem cells in post-infarct swine hearts. European Heart Journal, 29(12), 1578–1590. https://doi.org/10.1093/eurheartj/ehn167

    Article  PubMed  Google Scholar 

  14. Wang, L., Wei, F. X., Cen, J. S., Ping, S. N., Li, Z. Q., Chen, N. N., & Liu, S. Y. (2014). Early administration of tumor necrosis factor-alpha antagonist promotes survival of transplanted neural stem cells and axon myelination after spinal cord injury in rats. Brain Research, 1575, 87–100. https://doi.org/10.1016/j.brainres.2014.05.038

    Article  CAS  PubMed  Google Scholar 

  15. Menasche, P. (2018). Cell therapy trials for heart regeneration - lessons learned and future directions. Nature Reviews. Cardiology, 15(11), 659–671. https://doi.org/10.1038/s41569-018-0013-0

    Article  PubMed  Google Scholar 

  16. Vrtovec, B., Poglajen, G., Lezaic, L., Sever, M., Domanovic, D., Cernelc, P., & Wu, J. C. (2013). Effects of intracoronary CD34 + stem cell transplantation in nonischemic dilated cardiomyopathy patients: 5-year follow-up. Circulation Research, 112(1), 165–173. https://doi.org/10.1161/CIRCRESAHA.112.276519

    Article  CAS  PubMed  Google Scholar 

  17. Ziebart, T., Yoon, C. H., Trepels, T., Wietelmann, A., Braun, T., Kiessling, F., & Dimmeler, S. (2008). Sustained persistence of transplanted proangiogenic cells contributes to neovascularization and cardiac function after ischemia. Circulation Research, 103(11), 1327–1334. https://doi.org/10.1161/CIRCRESAHA.108.180463

    Article  CAS  PubMed  Google Scholar 

  18. Kanda, P., & Davis, D. R. (2017). Cellular mechanisms underlying cardiac engraftment of stem cells. Expert Opinion on Biological Therapy , 17(9), 1127–1143. https://doi.org/10.1080/14712598.2017.1346080

    Article  CAS  PubMed  Google Scholar 

  19. Liu, Y., & Zhang, H. (2016). Low-Level Laser Irradiation Precondition for Cardiac Regenerative Therapy. Photomedicine and Laser Surgery , 34(11), 572–579. https://doi.org/10.1089/pho.2015.4058

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, H., Hou, J. F., Shen, Y., Wang, W., Wei, Y. J., & Hu, S. (2010). Low level laser irradiation precondition to create friendly milieu of infarcted myocardium and enhance early survival of transplanted bone marrow cells. Journal of Cellular and Molecular Medicine, 14(7), 1975–1987. https://doi.org/10.1111/j.1582-4934.2009.00886.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. de Souza Vieira, S., Antonio, E. L., de Melo, B. L., Portes, L. A., Montemor, J., Oliveira, H. A., & Serra, A. J. (2019). Exercise Training Potentiates The Cardioprotective Effects of Stem Cells Post-infarction. Heart, Lung & Circulation, 28(2), 263–271. https://doi.org/10.1016/j.hlc.2017.11.005

    Article  Google Scholar 

  22. Chirico, E. N., Ding, D., Muthukumaran, G., Houser, S. R., Starosta, T., Mu, A.,.. . Libonati, J. R. (2015). Acute aerobic exercise increases exogenously infused bone marrow cell retention in the heart. Physiological Reports, 3(10). https://doi.org/10.14814/phy2.12566.

  23. Nunes, R. B., Alves, J. P., Kessler, L. P., & Dal Lago, P. (2013). Aerobic exercise improves the inflammatory profile correlated with cardiac remodeling and function in chronic heart failure rats. Clinics, 68(6), 876–882. https://doi.org/10.6061/clinics/2013(06)24

    Article  PubMed  PubMed Central  Google Scholar 

  24. Santos, M. H., Mde, H., Tucci, L., Garavelo, P. J., Reis, S. M., Antonio, M. M., & Maranhao, E. L. (2016). Previous exercise training increases levels of PPAR-alpha in long-term post-myocardial infarction in rats, which is correlated with better inflammatory response. Clinics, 71(3), 163–168. https://doi.org/10.6061/clinics/2016(03)08

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sharma, A. K., Kumar, A., Sahu, M., Sharma, G., Datusalia, A. K., & Rajput, S. K. (2018). Exercise preconditioning and low dose copper nanoparticles exhibits cardioprotection through targeting GSK-3beta phosphorylation in ischemia/reperfusion induced myocardial infarction. Microvascular Research, 120, 59–66. https://doi.org/10.1016/j.mvr.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  26. Manchini, M. T., Antonio, E. L., Silva Junior, J. A., de Carvalho, P. T., Albertini, R., Pereira, F. C., & Serra, A. J. (2017). Low-Level Laser Application in the Early Myocardial Infarction Stage Has No Beneficial Role in Heart Failure. Frontiers in Physiology, 8, 23. https://doi.org/10.3389/fphys.2017.00023

    Article  PubMed  PubMed Central  Google Scholar 

  27. dos Santos, L., Antonio, E. L., Souza, A. F., & Tucci, P. J. (2010). Use of afterload hemodynamic stress as a practical method for assessing cardiac performance in rats with heart failure. Canadian Journal of Physiology and Pharmacology, 88(7), 724–732. https://doi.org/10.1139/y10-062

    Article  PubMed  Google Scholar 

  28. de Lima, R. D. N., Vieira, S. S., Antonio, E. L., de Carvalho, C., de Paula Vieira, P. T., Mansano, R., & Serra, B. (2019). Low-level laser therapy alleviates the deleterious effect of doxorubicin on rat adipose tissue-derived mesenchymal stem cells. Journal of Photochemistry and Photobiology. B, 196, 111512. https://doi.org/10.1016/j.jphotobiol.2019.111512

    Article  CAS  Google Scholar 

  29. Zhang, H., Song, P., Tang, Y., Zhang, X. L., Zhao, S. H., Wei, Y. J., & Hu, S. S. (2007). Injection of bone marrow mesenchymal stem cells in the borderline area of infarcted myocardium: heart status and cell distribution. The Journal of Thoracic and Cardiovascular Surgery , 134(5), 1234–1240. https://doi.org/10.1016/j.jtcvs.2007.07.019

    Article  CAS  PubMed  Google Scholar 

  30. Scheffel, U., Tsan, M. F., & McIntyre, P. A. (1979). Labeling of human platelets with [111In) 8-hydroxyquinoline. Journal of Nuclear Medicine, 20(6), 524–531. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/119834.

  31. Gildehaus, F. J., Haasters, F., Drosse, I., Wagner, E., Zach, C., Mutschler, W., & Schieker, M. (2011). Impact of indium-111 oxine labelling on viability of human mesenchymal stem cells in vitro, and 3D cell-tracking using SPECT/CT in vivo. Molecular Imaging and Biology, 13(6), 1204–1214. https://doi.org/10.1007/s11307-010-0439-1

    Article  PubMed  Google Scholar 

  32. de Oliveira, H. A., Antonio, E. L., Silva, F. A., de Carvalho, P. T. C., Feliciano, R., Yoshizaki, A., & Serra, A. J. (2018). Protective effects of photobiomodulation against resistance exercise-induced muscle damage and inflammation in rats. Journal of Sports Sciences, 36(20), 2349–2357. https://doi.org/10.1080/02640414.2018.1457419

    Article  PubMed  Google Scholar 

  33. Serra, A. J., Higuchi, M. L., Ihara, S. S., Antonio, E. L., Santos, M. H., Bombig, M. T., & Tucci, P. J. (2008). Exercise training prevents beta-adrenergic hyperactivity-induced myocardial hypertrophy and lesions. European Journal of Heart Failure, 10(6), 534–539. https://doi.org/10.1016/j.ejheart.2008.03.016

    Article  CAS  PubMed  Google Scholar 

  34. Frangogiannis, N. G. (2014). The inflammatory response in myocardial injury, repair, and remodelling. Nature Reviews. Cardiology, 11(5), 255–265. https://doi.org/10.1038/nrcardio.2014.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nakamuta, J. S., Danoviz, M. E., Marques, F. L., dos Santos, L., Becker, C., Goncalves, G. A., & Krieger, J. E. (2009). Cell therapy attenuates cardiac dysfunction post myocardial infarction: effect of timing, routes of injection and a fibrin scaffold. PLoS One, 4(6), e6005. https://doi.org/10.1371/journal.pone.0006005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Richardson, J. D., Nelson, A. J., Zannettino, A. C., Gronthos, S., Worthley, S. G., & Psaltis, P. J. (2013). Optimization of the cardiovascular therapeutic properties of mesenchymal stromal/stem cells-taking the next step. Stem Cell Reviews, 9(3), 281–302. https://doi.org/10.1007/s12015-012-9366-7

    Article  CAS  Google Scholar 

  37. Petersen, A. M., & Pedersen, B. K. (2005). The anti-inflammatory effect of exercise. Journal of Applied Physiology (1985), 98(4), 1154–1162. https://doi.org/10.1152/japplphysiol.00164.2004

    Article  CAS  Google Scholar 

  38. Petersen, A. M., & Pedersen, B. K. (2006). The role of IL-6 in mediating the anti-inflammatory effects of exercise. Journal of Physiology and Pharmacology, 57 Suppl 10, 43–51. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17242490.

  39. Motawi, T. M., Atta, H. M., Sadik, N. A., & Azzam, M. (2014). The therapeutic effects of bone marrow-derived mesenchymal stem cells and simvastatin in a rat model of liver fibrosis. Cell Biochemistry and Biophysics, 68(1), 111–125. https://doi.org/10.1007/s12013-013-9698-1

    Article  CAS  PubMed  Google Scholar 

  40. Fan, W., Cheng, K., Qin, X., Narsinh, K. H., Wang, S., Hu, S., & Cao, F. (2013). mTORC1 and mTORC2 play different roles in the functional survival of transplanted adipose-derived stromal cells in hind limb ischemic mice via regulating inflammation in vivo. Stem Cells, 31(1), 203–214. https://doi.org/10.1002/stem.1265

    Article  CAS  PubMed  Google Scholar 

  41. Krishnamurthy, P., Thal, M., Verma, S., Hoxha, E., Lambers, E., Ramirez, V., & Kishore, R. (2011). Interleukin-10 deficiency impairs bone marrow-derived endothelial progenitor cell survival and function in ischemic myocardium. Circulation Research, 109(11), 1280–1289. https://doi.org/10.1161/CIRCRESAHA.111.248369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Suzuki, K., Murtuza, B., Smolenski, R. T., Sammut, I. A., Suzuki, N., Kaneda, Y., & Yacoub, M. H. (2001). Overexpression of interleukin-1 receptor antagonist provides cardioprotection against ischemia-reperfusion injury associated with reduction in apoptosis. Circulation, 104(12 Suppl 1), I308–I303. https://doi.org/10.1161/hc37t1.094871

    Article  CAS  PubMed  Google Scholar 

  43. Borow, K. M., Yaroshinsky, A., Greenberg, B., & Perin, E. C. (2019). Phase 3 DREAM-HF Trial of Mesenchymal Precursor Cells in Chronic Heart Failure. Circulation Research, 125(3), 265–281. https://doi.org/10.1161/CIRCRESAHA.119.314951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lavorato, V. N., Carlo, D., da Cunha, R. J., Okano, D. N., Belfort, B. S., de Freitas, F. G., & Natali, J. S. (2016). Mesenchymal stem cell therapy associated with endurance exercise training: Effects on the structural and functional remodeling of infarcted rat hearts. Journal of Molecular and Cellular Cardiology, 90, 111–119. https://doi.org/10.1016/j.yjmcc.2015.12.012

    Article  CAS  PubMed  Google Scholar 

  45. Cosmo, S., Francisco, J. C., Cunha, R. C., Macedo, R. M., Faria-Neto, J. R., Simeoni, R., & Guarita-Souza, L. C. (2012). Effect of exercise associated with stem cell transplantation on ventricular function in rats after acute myocardial infarction. Revista Brasileira de Cirurgia Cardiovascular, 27(4), 542–551. https://doi.org/10.5935/1678-9741.20120096

    Article  PubMed  Google Scholar 

  46. Bernal, A., & Galvez, B. G. (2013). The potential of stem cells in the treatment of cardiovascular diseases. Stem Cell Reviews and Reports, 9(6), 814–832. https://doi.org/10.1007/s12015-013-9461-4

    Article  CAS  Google Scholar 

  47. Madigan, M., & Atoui, R. (2018). Therapeutic Use of Stem Cells for Myocardial Infarction. Bioengineering (Basel), 5(2). https://doi.org/10.3390/bioengineering5020028.

  48. Santos, A. A., Helber, I., Flumignan, R. L., Antonio, E. L., Carvalho, A. C., Paola, A. A., & Moises, V. A. (2009). Doppler echocardiographic predictors of mortality in female rats after myocardial infarction. Journal of Cardiac Failure, 15(2), 163–168. https://doi.org/10.1016/j.cardfail.2008.10.017

    Article  PubMed  Google Scholar 

  49. Helber, I., Dos Santos, A. A., Antonio, E. L., Flumignan, R. L., Bocalini, D. S., Piccolo, C., & Tucci, P. J. (2009). Digitoxin prolongs survival of female rats with heart failure due to large myocardial infarction. Journal of Cardiac Failure, 15(9), 798–804. https://doi.org/10.1016/j.cardfail.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  50. dos Santos, A. A., Helber, I., Antonio, E. L., Franco, M. F., & Tucci, P. J. (2013). Severity of the cardiac impairment determines whether digitalis prolongs or reduces survival of rats with heart failure due to myocardial infarction. International Journal of Cardiology, 167(2), 357–361. https://doi.org/10.1016/j.ijcard.2011.12.097

    Article  PubMed  Google Scholar 

  51. Lavie, C. J., Arena, R., Swift, D. L., Johannsen, N. M., Sui, X., Lee, D. C., & Blair, S. N. (2015). Exercise and the cardiovascular system: clinical science and cardiovascular outcomes. Circulation Research, 117(2), 207–219. https://doi.org/10.1161/CIRCRESAHA.117.305205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. O’Connor, G. T., Buring, J. E., Yusuf, S., Goldhaber, S. Z., Olmstead, E. M., Paffenbarger, R. S., Jr., & Hennekens, C. H. (1989). An overview of randomized trials of rehabilitation with exercise after myocardial infarction. Circulation, 80(2), 234–244. https://doi.org/10.1161/01.cir.80.2.234

    Article  PubMed  Google Scholar 

  53. Pandey, A., Patel, M., Gao, A., Willis, B. L., Das, S. R., Leonard, D., & Berry, J. D. (2015). Changes in mid-life fitness predicts heart failure risk at a later age independent of interval development of cardiac and noncardiac risk factors: the Cooper Center Longitudinal Study. American Heart Journal, 169(2), 290-297 e291. https://doi.org/10.1016/j.ahj.2014.10.017

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Editage company for English assistance and proofreading the article. This work was supported by São Paulo Research Foundation – FAPESP [09/54225-8, 15/11028-9, 2018/06865-7) and Brazilian National Council for Scientific and Technological Development – CNPq [305527/2017-7]. Funding sources had no involvement in study design or collection, analysis and interpretation of data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Jorge Serra.

Ethics declarations

Conflict of Interest

Authors have no conflicts of interest to disclose. Authors confirm that that the work described has not been published previously, that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form in English or in any other language, without the written consent of the copyright holder.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza Vieira, S., Antonio, E.L., de Melo, B.L. et al. Increased Myocardial Retention of Mesenchymal Stem Cells Post-MI by Pre-Conditioning Exercise Training. Stem Cell Rev and Rep 16, 730–741 (2020). https://doi.org/10.1007/s12015-020-09970-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-09970-z

Keywords

Navigation