Skip to main content
Log in

Halloysite nanotubes: an eco-friendly adsorbent for the adsorption of Th(IV)/U(VI) ions from aqueous solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, the halloysite nanotubes was characterized and the adsorption of Th(IV) and U(VI) on halloysite nanotubes was investigated as a function of contact time, adsorbent dosage, pH, ionic strength, initial U(VI) concentration and temperature using batch method. Meanwhile, the adsorption mechanism of uranium and thorium on halloysite nanotubes was discussed. The microscopic results displayed that halloysite nanotubes was tubular morphology and highly porous and high specific surface area of ca. 55.65 m2/g. The adsorption results showed that the adsorption of U(VI) and Th(IV) on halloysite nanotubes followed pseudo-second-order kinetic model. The strong pH dependent adsorption of U(VI) and Th(IV) displayed their strong surface complexation with the surface of halloysite nanotubes. The adsorption of Th(IV) and U(VI) increased with elevating temperature and was an endothermic and spontaneous process. The adsorption isotherms of Th(IV) and U(VI) can be better described by Freundlich and D–R model. The effect of ionic strength on the adsorption of thorium on halloysite nanotubes was much greater than that on uranium(almost unaffected), which suggested the adsorption of Th(IV) on halloysite nanotubes was most probably based on the formation of inner-sphere complexes, while that of U(VI) was based on the formation of outer-sphere complex on the edge surfaces. Th(IV) and U(VI) adsorption–desorption isotherm on halloysite nanotubes indicated adsorption process was irreversible. The selectivity order of adsorption by the halloysite nanotubes was Th(IV) > U(VI). The higher adsorption efficiency of the halloysite nanotubes for Th(IV) could be utilized for selective separation of Th(IV) from U(VI) aqueous with pH 4.1–4.3. The novel and environmentally friendly adsorption material is feasible to extract thorium from waste aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Xiao J, Xie S, Jing Y, Yao Y, Wang XQ, Jia YZ (2016) Preparation of halloysite@ graphene oxide composite and its application for high-efficient decontamination of U(VI) from aqueous solution. J Mol Liq 220:304–310

    Article  CAS  Google Scholar 

  2. Sun Y, Shao D, Chen C, Yang SB, Wang XK (2013) Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline. Environ Sci Technol 47(17):9904–9910

    Article  CAS  PubMed  Google Scholar 

  3. Ilaiyaraja P, Deb AKS, Ponraju D (2015) Removal of uranium and thorium from aqueous solution by ultrafiltration (UF) and PAMAM dendrimer assisted ultrafiltration (DAUF). J Radioanal Nucl Chem 303(1):441–450

    Article  CAS  Google Scholar 

  4. Li J, Wen F, Pan LS, Liu ZJ, Dong YH (2013) Removal of radiocobalt ions from aqueous solutions by natural halloysite nanotubes. J Radioanal Nucl Chem 295(1):431–438

    Article  CAS  Google Scholar 

  5. Hu J, Shao DD, Chen CL, Sheng GD, Li JX, Wang XK, Nagatsu M (2010) Plasma-induced grafting of cyclodextrin onto multiwall carbon nanotube/iron oxides for adsorbent application. J Phys Chem B 114(20):6779–6785

    Article  CAS  PubMed  Google Scholar 

  6. El-Dessouky SI, El-Sofany EA, Daoud JA (2007) Studies on the sorption of praseodymium (III), holmium (III) and cobalt (II) from nitrate medium using TVEX–PHOR resin. J Hazard Mater 143(1–2):17–23

    Article  CAS  PubMed  Google Scholar 

  7. Zhang R, Chen CL, Li J, Wang XK (2015) Preparation of montmorillonite @ carbon composite and its application for U(VI) removal from aqueous solution. Appl Surf Sci 349:129–137

    Article  CAS  Google Scholar 

  8. Lieser KH (2008) Nuclear and radiochemistry: fundamentals and applications. Wiley, New York

    Google Scholar 

  9. Chakraborty S, Favre Banerjee D, Scheinost AC, Mullet M, Ehrhardt JJ, Brendle J, Vidal L, Charlet L (2010) U(VI) sorption and reduction by Fe(II) sorbed on montmorillonite. Environ Sci Technol 44(10):3779–3785

    Article  CAS  PubMed  Google Scholar 

  10. Huang JY, Wu ZW, Chen LW, Sun YB (2015) The sorption of Cd (II) and U(VI) on sepiolite: a combined experimental and modeling studies. J Mol Liq 209:706–712

    Article  CAS  Google Scholar 

  11. Iida Y, Barr L, Yamaguchi T (2016) Sorption behavior of thorium onto montmorillonite and illite. Genshiryoku Bakkuendo Kenkyu (Online) 23(1):3–8

    CAS  Google Scholar 

  12. Wu XP, Liu C, Qi HJ, Zhang XL, Dai JJ, Zhang QX, Zhang L, Wu YC, Peng XH (2016) Synthesis and adsorption properties of halloysite/carbon nanocomposites and halloysite- derived carbon nanotubes. Appl Clay Sci 119:284–293

    Article  CAS  Google Scholar 

  13. Du M, Guo B, Jia D (2010) Newly emerging applications of halloysite nanotubes: a review. Polym Int 59(5):574–582

    Article  CAS  Google Scholar 

  14. Kamble R, Ghag M, Gaikawad S, Panda B (2012) Halloysite nanotubes and applications: a review. J Adv Scient Res 3(2):25–29

    Google Scholar 

  15. Yuan P, Southon PD, Liu ZW, Green MER (2008) Functionalization of halloysite clay nanotubes by grafting with gamma-aminopropyltriethoxysilane. J Phys Chemi C 112(40):15742–15751

    Article  CAS  Google Scholar 

  16. Yuan P, Tan DY, Annabi-Bergaya F (2015) Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci 112–113:75–93

    Article  CAS  Google Scholar 

  17. Kubala-Kukuś A, Szczepanik B, Stabrawa I, Banaś D, Szary K, Pajek M, Rogala P (2019) X-ray photoelectron spectroscopy analysis of chemically modified halloysite. Radiat Phys Chem. https://doi.org/10.1016/j.radphyschem.2019.02.008

    Article  Google Scholar 

  18. Dong Y, Liu Z, Chen L (2011) Removal of Zn (II) from aqueous solution by natural halloysite nanotubes. J Radioanal Nucl Chem 292(1):435–443

    Article  CAS  Google Scholar 

  19. Kilislioglu A, Bilgin B (2002) Adsorption of uranium on halloysite. Radiochim Acta 90(3):155–160

    Article  CAS  Google Scholar 

  20. Liu WX, Sun ZX, Forsling W, Du Q, Tang HX (1999) A comparative study of surface acid–base characteristics of natural illite from different origins. J Colloid Interface Sci 219(1):48–61

    Article  CAS  PubMed  Google Scholar 

  21. Zhang HX, Tao ZY (2002) Sorption of uranyl ions on silica: effects of contact time, pH, ionic strength, concentration and phosphate. J Radioanal Nucl Chem 254(1):103–107

    Article  CAS  Google Scholar 

  22. Banaś D, Kubala-Kukuś A, Braziewicza J, Pajeka M, Wudarczyk-Moćkob J, Majewskaa U, Czechc K, Garnuszekc M, Stomkiewiczc P, Szczepanik B (2013) Study of properties of chemically modified samples of halloysite mineral with X-ray fluorescence and X-ray power diffraction methods. Radiat Phys Chem 3:129–134

    Article  CAS  Google Scholar 

  23. Tian XK, Wang WW, Wang YX, Komarneni S, Yang C (2015) Polyethylenimine functionalized halloysite nanotubes for efficient removal and fixation of Cr(VI). Microporous Mesoporous Mater 207:46–52

    Article  CAS  Google Scholar 

  24. Dimiev AM, Tour JM (2014) Mechanism of graphene oxide formation. ACS Nano 8:3060–3068

    Article  CAS  PubMed  Google Scholar 

  25. Zhu KC, Duan YY, Wang F, Gao P, Jia HZ, Ma CY, Wang CY (2017) Silane-modified halloysite/Fe3O4 nanocomposites: simultaneous removal of Cr(VI) and Sb(V) and positive effects of Cr(VI) on Sb(V) adsorption. Chem Eng J 311:236–246

    Article  CAS  Google Scholar 

  26. Luo P, Zhao YF, Zhang B, Liu JD, Yang Y, Liu JF (2010) Study on the adsorption of neutral red from aqueous solution onto halloysite nanotubes. Water Res 44(5):1489–1497

    Article  CAS  PubMed  Google Scholar 

  27. Potgieter JH, Potgieter-Vermaak SS, Kalibantonga PD (2006) Heavy metals removal from solution by palygorskite clay. Miner Eng 19:463–470

    Article  CAS  Google Scholar 

  28. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  29. Hong HL, Churchman GJ, Yin K, Li RB, Li ZH (2014) Randomly interstratified illite–vermiculite from weathering of illite in red earth sediments in Xuancheng, southeastern China. Geoderma 214:42–49

    Article  CAS  Google Scholar 

  30. Zhou K, Wu BR, Su LH, Xin WS, Chai XL (2018) Enhanced phosphate removal using nanostructured hydrated ferriczirconium binary oxide confined in a polymeric anion exchanger. Chem Eng J 345:640–647

    Article  CAS  Google Scholar 

  31. Badruddoza AZM, Shawon ZBZ, Tay WJD, Hidajat K, Uddin MS (2013) Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydr Polym 91:322–332

    Article  CAS  PubMed  Google Scholar 

  32. Mokhtari M, Keshtkar AR (2016) Removal of Th(IV), Ni(II) and Fe(II) from aqueous solutions by a novel PAN–TiO2 nanofiber adsorbent modified with aminopropyltriethoxy- silane. Res Chem Intermed 42:4055–4076

    Article  CAS  Google Scholar 

  33. Talebi M, Abbasizadeh S, Keshtkar AR (2017) Evaluation of single and simultaneous thorium and uranium sorption from water systems by an electrospun PVA/SA/PEO/HZSM5 nanofiber. Process Saf Environ Prot 109:340–356

    Article  CAS  Google Scholar 

  34. James RO, Healy TW (1972) Adsorption of hydrolyzable metal ions at the oxide—water interface. III. A thermodynamic model of adsorption. J Colloid Interface Sci 40(1):65–81

    Article  CAS  Google Scholar 

  35. Zhao M, Liu P (2008) Adsorption behavior of methylene blue on halloysite nanotubes. Microporous Mesoporous Mater 112(1–3):419–424

    Article  CAS  Google Scholar 

  36. Tan XL, Chen CL, Yu SM, Wang XK (2008) Sorption of Ni2+ on Na-rectorite studied by batch and spectroscopy methods. Appl Geochem 23(9):2767–2777

    Article  CAS  Google Scholar 

  37. Mall ID, Srivastava VC, Kumar GVA, Mishra IM (2006) Characterization and utilization of mesoporous fertilizer plant waste carbon for adsorptive removal of dyes from aqueous solution. Colloids Surf A 278(1–3):175–187

    Article  CAS  Google Scholar 

  38. Chandra Srivastava V, Deo Mall I, Mani Mishra I (2006) Modelling individual and competitive adsorption of cadmium (II) and zinc (II) metal ions from aqueous solution onto bagasse fly ash. Sep Sci Technol 41(12):2685–2710

    Article  CAS  Google Scholar 

  39. Pan N, Li L, Ding J, Li SK, Wang RB, Jin YD, Wang XK, Xia CQ (2016) Preparation of graphene oxide-manganese dioxide for highly efficient adsorption and separation of Th(IV)/U(VI). J Hazard Mater 309:107–115

    Article  CAS  PubMed  Google Scholar 

  40. Jiang D, Li L, Pan N, Yang FQ, Li AK, Wang RB, Wyman LW, Jin YD, Xia CQ (2015) The separation of Th(IV)/U(VI) via selective complexation with graphene oxide. Chem Eng J 271:147–154

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank to the financial support of the National Natural Science Foundation of China (Nos. 21641003 and 21976074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxia Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Guo, H., Wang, F. et al. Halloysite nanotubes: an eco-friendly adsorbent for the adsorption of Th(IV)/U(VI) ions from aqueous solution. J Radioanal Nucl Chem 324, 1151–1165 (2020). https://doi.org/10.1007/s10967-020-07142-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07142-4

Keywords

Navigation