Skip to main content
Log in

Plasmonic Quantum Dot Nanocavity Laser: Hybrid Modes

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The hybrid modes in the plasmonic quantum dot (QD) laser are modeled using the Marctili method. The model is then used to study the mode characteristics. The modes are going to cutoff point at zero propagation constant, while it goes to surface plasmon polaritons (SPPs) mode at higher photon energy. This behavior was different from that of waveguide modes shown in the dielectric waveguide. At plasmon resonance, hybrid mode is exactly one mode: surface plasmon polariton mode (perfect electric conductor).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chang S, Adrian Ni C, Chuang SL (2008) Theory for bowtie plasmonic nanolasers. Opt Express 16:10580–10595

    Article  Google Scholar 

  2. Adrian Ni C, Chuang SL (2012) Theory of high-speed nanolasers and nanoLEDs. Opt Express 20:16450–16470

    Article  Google Scholar 

  3. Lu C, Chuang SL (2011) A surface-emitting 3D metal-nanocavity laser: proposal and theory. Opt Express 19:13225–13244

    Article  CAS  Google Scholar 

  4. Chang S, Lin T, Chuang SL (2010) Theory of plasmonic Fabry-Perot nanolasers. Opt Express 18:15039–15053

    Article  CAS  Google Scholar 

  5. Jabir JN, Ameen SMM, Al-Khursan AH (2019) Modeling of dielectric function in plasmonic quantum dot nanolaser. Opt Quant Electron 51:396

    Article  Google Scholar 

  6. Jabir JN, Ameen SMM, Al-Khursan AH (2019) Plasmonic quantum dot nanolaser: effect of waveguide Fermi energy. Plasmonics 14:1881–1891

    Article  CAS  Google Scholar 

  7. Adrian Ni C, Chang S, Gargas DJ, Moore MC, Yang P, Chuang SL (2011) Metal-coated zinc oxide Nanocavities. IEEE J Quantum Electronics 47:245–251

    Article  Google Scholar 

  8. Akram H, Al-Khursan AH (2016) Second-order nonlinearity in ladder plus-Y configuration in double quantum dot structure. Appl Opt 55:9866–9874

    Article  Google Scholar 

  9. Al-Khursan AH (2005) Intensity noise characteristics in quantum-dot lasers: four-level rate equations analysis. J Lumin 113:129–136

    Article  CAS  Google Scholar 

  10. Vyshnevyy AA, Fedyanin DY (2016) Spontaneous emission and fundamental limitations on the signal-to-noise ratio in deep-subwavelength plasmonic waveguide structures with gain. Phys Rev Appl 6:064024

    Article  Google Scholar 

  11. Lu C-Y, Chuang SL, Bimberg D (2013) Metal-cavity surface-emitting nanolasers. IEEE J Quantum Electronics 49:114–121

    Article  CAS  Google Scholar 

  12. Ivanova OV, Hammer M, Stoffer R, van Groesen E (2007) A variational mode expansion mode solver. Opt Quant Electron 39:849–864

    Article  Google Scholar 

  13. Sudbo AS (1994) Improved formulation of the film mode matching method for mode field calculations in dielectric waveguides. Pure Appl Opt 3:381–388

    Article  Google Scholar 

  14. Marcatili EAJ (1969) Dielectric rectangular waveguide and directional coupler for integrated optics. Bell Syst Tech J 48:2071–2102

    Article  Google Scholar 

  15. Westerveld WJ, Leinders SM, Dongen KW, Urbach HP, Yousefi M (2012) Extension of Marcatili’s analytical approach for rectangular silicon optical waveguides. J Lightwave Technol 30:2388–2401

    Article  CAS  Google Scholar 

  16. Marcuse D (1991) Theory of dielectric optical waveguides, 2nd Edition. Academic Press, San Diego

  17. Snyder AW, Love JD (1983) Optical waveguide theory. Chapman and Hall, New York

  18. Chuang LS (2009) Physics of photonic devices, 2nd Edition. Wiley, New Jersey

  19. Westerveld WJ, Leinders SM, Pozo J, van Dongen KWA, Yousefi M, Urbach HP (2012) Extension of Marcatili’s analytical approach for 220 nm high waveguides in SOI technology. Conference: 17th Annual Symposium of the IEEE Photonics Society Benelux Chapter, November

  20. Kim J, Chuang SL (2006) Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers. IEEE J Quantum Electron 42:942–952

    Article  CAS  Google Scholar 

  21. Al-Husseini H, Al-Khursan AH, Al-Dabagh SY (2009) III-N QD lasers. Open Nanosci J 3:1–11

    Article  CAS  Google Scholar 

  22. Dwara SN, Al-Khursan AH (2015) Quantum efficiency of InSbBi quantum dot photodetector. Appl Opt 54:9722–9727

    Article  CAS  Google Scholar 

  23. Flayyih AH, Al-Khursan AH (2013) Theory of four wave mixing in quantum dot semiconductor optical amplifiers. J Phys D Appl Phys 46:445102

    Article  Google Scholar 

  24. Ahn D, Chuang S-L (1987) Calculation of linear and nonlinear. intersubband optical absorptions in a quantum ode1 with an applied electric field. IEEE J Quantum Electron QE-23:2196–2204

    CAS  Google Scholar 

  25. Vahala KJ (1988) Quantum box fabrication tolerance and size limits in semiconductom and their effect on optical gain. IEEE J Quantum Electron 24:523–530

    Article  CAS  Google Scholar 

  26. Al-Khursan AH (2006) Gain of excited states in the quantum-dots. Phys E 35:6–8

    Article  Google Scholar 

  27. Huffaker DL, Deppe DG (1998) Electroluminescence efficiency of 1.3 μm wavelength InGaAs/GaAs quantum dots. Appl Phys Lett 73:520–522

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Habbeb Al-Khursan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabir, J.N., Ameen, S.M.M. & Al-Khursan, A.H. Plasmonic Quantum Dot Nanocavity Laser: Hybrid Modes. Plasmonics 15, 1451–1458 (2020). https://doi.org/10.1007/s11468-020-01170-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01170-2

Keywords

Navigation