Skip to main content
Log in

Four octamolybdate- and Keggin-based compounds constructed by flexible bis(triazole) ligands with different spacers

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

By using two kinds of flexible bis(triazole) ligands 1,3-bis(1,2,4-triazol-1-y1)propane (btp) and 1,6-bis(1,2,4-triazol-1-y1)hexane (btx), four compounds based on octamolybdate and Keggin anions were obtained, respectively, under hydrothermal conditions, namely [Cu(btp)2(H2O)(α-Mo8O26)1/2]·H2O (1), [Cu2(btx)4(β-Mo8O26)] (2), [Ag3(btp)2(PW12O40)] (3) and [Cd(btx)3(SiW12O40)]·H2btx (4). These compounds were structurally characterized by physico-chemical and spectroscopic methods. In compound 1, there is a metal–organic layer containing square tetra-nuclear cycles. Two layers cover [Mo8O26]4− anions to form a new layer. Adjacent new layers penetrate to build a three-dimensional (3D) framework. Compound 2 contains a rhomboid tetra-nuclear cycle to surround a Mo1-containing anion. These cycles are connected by btx ligands to form a two-dimensional (2D) layer. Adjacent layers are connected by Mo5-containing anions, and a 3D structure is constructed. Compound 3 contains bi-nuclear cycles which are further linked by anions and Ag2 atoms to form a 2D layer. The metal–organic chains in compound 4 are linked by Keggin anions to form a 2D structure. We also studied the photocatalytic and electrochemical behavior of compounds 14.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sartzi H, Miras HN, Laia VN, Long DL, Cronin L (2015) Angew Chem Int Ed 54:15488–15492

    Article  CAS  Google Scholar 

  2. Su YM, Wang Z, Zhuang GL, Zhao QQ, Wang XP, Tung CH, Sun D (2019) Chem Sci 10:564–568

    Article  CAS  Google Scholar 

  3. Han ZG, Xin X, Zheng R, Yu HT (2018) Dalton Trans 47:3356–3365

    Article  CAS  Google Scholar 

  4. Tian AX, Yang ML, Fu YB, Ying J, Wang XL (2019) Inorg Chem 58:4190–4200

    Article  CAS  Google Scholar 

  5. Walsh JJ, Bond AM, Forster RJ, Keyes TE (2016) Coord Chem Rev 306:217–234

    Article  CAS  Google Scholar 

  6. Wang YJ, Wu SY, Sun YQ, Li XX, Zheng ST (2019) Chem Commun 55:2857–2860

    Article  CAS  Google Scholar 

  7. Li SB, Zhang L, Lan YQ, O’Halloran KP, Ma HY, Pang HJ (2018) Chem Commun 54:1964–1967

    Article  CAS  Google Scholar 

  8. Li MT, Yang XY, Li JS, Sheng N, Liu GD, Sha JQ, Lan YQ (2018) Inorg Chem 57:3865–3872

    Article  CAS  Google Scholar 

  9. Tian AX, Liu XJ, Ying J, Zhu DX, Wang XL, Peng J (2011) CrystEngComm 13:6680–6687

    Article  CAS  Google Scholar 

  10. Dong BX, Chen HB, Wu YC, Zhao J, Teng YL, Liu WL, Li ZW (2017) Dalton Trans 46:14286–14292

    Article  CAS  Google Scholar 

  11. Tian XR, Xin X, Gao YZ, Han ZG (2018) CrystEngComm 20:1588–1596

    Article  CAS  Google Scholar 

  12. Pang HJ, Peng J, Zhang CJ, Li YG, Zhang PP, Ma HY, Su ZM (2010) Chem Commun 46:5097–5099

    Article  CAS  Google Scholar 

  13. Tian AX, Ning YL, Yang Y, Hou X, Ying J, Liu GC, Zhang JW, Wang XL (2015) Dalton Trans 44:16486–16493

    Article  CAS  Google Scholar 

  14. Lu K, Peláez AL, Wu LC, Cao Y, Zhu CH, Fu H (2019) Inorg Chem 58:1794–1805

    Article  CAS  Google Scholar 

  15. Tian AX, Liu XJ, Ying J, Zhu DX, Wang XL, Peng J (2011) Inorg Chem Commun 14:697–701

    Article  CAS  Google Scholar 

  16. Tian AX, Ying J, Peng J, Sha JQ, Han ZG, Ma JF, Su ZM, Hu NH, Jia HQ (2008) Inorg Chem 47:3274–3283

    Article  CAS  Google Scholar 

  17. Tian AX, Ying J, Peng J, Sha JQ, Pang HJ, Zhang PP, Chen Y, Zhu M, Su ZM (2009) Inorg Chem 48:100–110

    Article  CAS  Google Scholar 

  18. Tian AX, Ying J, Peng J, Sha JQ, Pang HJ, Zhang PP, Chen Y, Zhu M, Su ZM (2008) Cryst Growth Des 8:3717–3724

    Article  CAS  Google Scholar 

  19. Sheldrick GM (2008) Acta Crystallogr Sect A 64:112–122

    Article  CAS  Google Scholar 

  20. Brown ID, Altermatt D (1985) Acta Crystallogr B 41:244–247

    Article  Google Scholar 

  21. Ying J, Hou M, Liu XJ, Tian AX, Wang XL (2012) J Coord Chem 65:218–225

    Article  CAS  Google Scholar 

  22. Tian AX, Fu YB, Cui HT, Ying J, Yang ML, Yang Y, Wang XL (2019) New J Chem 43:9980–9988

    Article  CAS  Google Scholar 

  23. Gao HY, Gong CH, Zeng XH, Xu H, Zeng QD, Zhang JY, Zhong ZY, Xie JL (2019) Dalton Trans 48:5541–5550

    Article  Google Scholar 

Download references

Acknowledgements

Financial supports of this research by the National Natural Science Foundation of China (Nos. 21571023 and 21101075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaguang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5961 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, J., Wang, X. & Chen, Y. Four octamolybdate- and Keggin-based compounds constructed by flexible bis(triazole) ligands with different spacers. Transit Met Chem 45, 343–352 (2020). https://doi.org/10.1007/s11243-020-00385-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-020-00385-w

Navigation