Skip to main content
Log in

Role of Matrix Microstructure in Governing the Mechanical Behavior and Corrosion Response of Two Magnesium Alloy Metal Matrix Composites

  • Metal Matrix Composites: Analysis, Modeling, Observations and Interpretations
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The microstructure, mechanical properties, and corrosion resistance of two popular magnesium cast alloys, namely Mg–Al–Mn alloy (AM100) and Mg–Zn–Cu alloy (ZC63), and their saffil alumina short-fiber-reinforced composites have been investigated. The results reveal that the mechanical behavior of the magnesium alloy metal matrix composites (Mg-MMCs) was influenced by the nature of the base matrix and the microstructural phases present. The behavior of the composites also depended on the fiber volume fraction. The composites of the two alloys showed an improvement in tensile strength at high temperatures compared with the unreinforced counterpart. Under impact loading and salt spray corrosion conditions, the composites exhibited observable degradation in properties. Under corrosion, the distribution of microstructural phases essentially determined the corrosion resistance of the matrix. The effect of the inherent nature of the alloy matrix in controlling both the mechanical properties and corrosion behavior of the Mg-MMCs is thoroughly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Ceschini, A. Dahle, M. Gupta, A. Jarfors, S. Jayalakshmi, A. Morri, F. Rotundo, S. Toschi, and R. Arvind Singh, Aluminium and Magnesium Metal Matrix Nanocomposites (Springer Nature, Singapore, 2016)

    Google Scholar 

  2. K. Kainer, Metal Matrix Composites: Custom-made Materials for Automotive and Aerospace Engineering (Wiley, Hoboken, 2006)

    Book  Google Scholar 

  3. M. Gupta, and N.M.L. Sharon, Magnesium, Magnesium Alloys, and Magnesium Composites (Wiley, New Jersey, NJ, 2011)

    Book  Google Scholar 

  4. N. Chawla and K.K. Chawla, Metal Matrix Composites (Springer, New York, NY, 2006)

    Google Scholar 

  5. S. Jayalakshmi, R. Arvind Singh, and T.S. Srivatsan, Metal-matrix composites innovations, advances and applications, in The Minerals, Metals & Materials Series (TMS), ed. by T. Srivatsan, Y. Zhang, W. Harrigan Jr. (Springer, Cham, 2018), pp. 135–148

    Google Scholar 

  6. S. Jayalakshmi, S.V. Kailas, and S. Seshan, Compos. A 33, 135 (2002)

    Article  Google Scholar 

  7. C.A. Nunez-Lopez, P.S. Skeldon, G.E. Thompson, P. Lyon, H. Karimzadeh, and T.E. Wilks, Corros. Sci. 37, 689 (1995)

    Article  Google Scholar 

  8. Y. Komura, M. Mitarai, I. Nakatani, H. Iba, and T. Shimuzu, Acta Cryst. B 26, 666 (1970)

    Article  Google Scholar 

  9. W. Yang, G.C. Weatherly, D.W. Mccomb, and D.J. Llyod, J. Microsc. 185, 292 (1997)

    Article  Google Scholar 

  10. R.J. Arsenault, and N. Shi, Mater. Sci. Eng. 81, 175 (1986)

    Article  Google Scholar 

  11. R.J. Arsenault, and R.M. Fishcer, Scr. Metall. 17, 67 (1989)

    Article  Google Scholar 

  12. M. Alderman, M.V. Manuel, N. Hort, N.R. Neelameggham, and M. Technology, The Minerals Metals & Materials & Society (Wiley, Hoboken, 2014), p. 2014

    Google Scholar 

  13. S. Jayalakshmi, S.V. Kailas, S. Seshan, and E. Fleury, J. Mater. Sci. 41, 3743 (2006)

    Article  Google Scholar 

  14. A.G. Metcalfe, Interfaces in metal matrix composites, Chap. 1, introduction and review, in Composite Materials, ed. by L.J. Broutman, H. Richard, vol 1, (Brook Academic, New York, NY, 1974)

    Google Scholar 

  15. K. Purazrang, K. Kainer, and B.L. Mordike, Composites 22, 456 (1991)

    Article  Google Scholar 

  16. F.P. Kehoe, and G.A. Chadwick,Mater. Sci. Eng. A 135, 209 (1991)

    Article  Google Scholar 

  17. R.C. Novak, and M.A. De Crescent, Composite Materials: Testing and Design Second Conference, ASTM STP 497. American Society for Testing and Materials 311(1972).

  18. S. Jayalakshmi, S.V. Kailas, and S. Seshan, J. Mater. Sci. 38, 1383 (2003)

    Article  Google Scholar 

  19. M.J. Dellis, J.P. Keustermans, F. Delannay, and J. Wegria, Mater. Sci. Eng. A 135, 253 (1991)

    Article  Google Scholar 

  20. S.L. Coleman, and V.D. Scott, B. Mc Enaney, J. Mater. Sci. 29, 2826 (1994)

    Article  Google Scholar 

  21. G.L. Song, and A. Atrens, Adv. Eng. Mater. 1, 11 (1999)

    Article  Google Scholar 

  22. A. Atrens, G.L. Song, Z. Shi, A. Soltan, S. Johnston, and M.S. Dargusch, Understanding the Corrosion of Mg and Mg Alloys, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (Elsevier, The Netherlands, 2018), pp. 515–534

    Google Scholar 

  23. G.L. Maker, and J. Kruger, Int. Mater. Rev. 38, 138 (1993)

    Article  Google Scholar 

  24. L.L. Shreir, Corrosion (Newnes-Butterworths, London, 1965), pp. 86–101

    Google Scholar 

Download references

Acknowledgements

S.J., R.A.S., and X.C. acknowledge funding provided by the National Natural Science Foundation of China (Grant No. 51975419)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Arvind Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayalakshmi, S., Singh, R.A., Chen, X. et al. Role of Matrix Microstructure in Governing the Mechanical Behavior and Corrosion Response of Two Magnesium Alloy Metal Matrix Composites. JOM 72, 2882–2891 (2020). https://doi.org/10.1007/s11837-020-04166-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04166-9

Navigation